A highly selective inhibitor of interleukin-1 receptor-associated kinases 1/4 (IRAK-1/4) delineates the distinct signaling roles of IRAK-1/4 and the TAK1 kinase.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-4, as well as transforming growth factor β-activated kinase 1 (TAK1), are protein kinases essential for transducing inflammatory signals from interleukin receptors. IRAK family proteins andTAK1have high sequence identity within the ATPbinding pocket, limiting the development of highly selective IRAK-1/4 or TAK1 inhibitors. Beyond kinase activity, IRAKs and TAK1 act as molecular scaffolds along with other signaling proteins, complicating the interpretation of experiments involving knockin or knockout approaches. In contrast, pharmacological manipulation offers the promise of targeting catalysis-mediated signaling without grossly disrupting the cellular architecture. Recently, we reported the discovery of takinib, a potent and highly selective TAK1 inhibitor that has only marginal activity against IRAK-4. On the basis of the TAK1-takinib complex structure and the structure of IRAK-1/4, here we defined critical contact sites of the takinib scaffold within the nucleotide-binding sites of each respective kinase. Kinase activity testing of takinib analogs against IRAK-4 identified a highly potent IRAK-4 inhibitor (HS-243). In a kinome-wide screen of 468 protein kinases, HS-243 had exquisite selectivity toward both IRAK-1 (IC5 = 20 nM) and IRAK-4 (IC50 = 20 nM), with only minimal TAK1-inhibiting activity (IC5 = 0.5 μM) Using HS-243 and takinib, we evaluated the consequences of cytokine/chemokine responses after selective inhibition of IRAK-1/4 or TAK1 in response to lipopolysaccharide challenge in human rheumatoid arthritis fibroblast-like synoviocytes. Our results indicate that HS-243 specifically inhibits intracellular IRAKs without TAK1 inhibition and that these kinases have distinct, nonredundant signaling roles. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Biological Chemistry is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)