IMPContact: An Interhelical Residue Contact Prediction Method.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      As an important category of proteins, alpha-helix transmembrane proteins (αTMPs) play an important role in various biological activities. Because the solved αTMP structures are inadequate, predicting the residue contacts among the transmembrane segments of an αTMP exhibits the basis of protein fold, which can be used to further discover more protein functions. A few efforts have been devoted to predict the interhelical residue contact using machine learning methods based on the prior knowledge of transmembrane protein structure. However, it is still a challenge to improve the prediction accuracy, while the deep learning method provides an opportunity to utilize the structural knowledge in a different insight. For this purpose, we proposed a novel αTMP residue-residue contact prediction method IMPContact, in which a convolutional neural network (CNN) was applied to recognize those interhelical contacts in a TMP using its specific structural features. There were four sequence-based TMP-specific features selected to descript a pair of residues, namely, evolutionary covariation, predicted topology structure, residue relative position, and evolutionary conservation. An up-to-date dataset was used to train and test the IMPContact; our method achieved better performance compared to peer methods. In the case studies, IHRCs in the regular transmembrane helixes were better predicted than in the irregular ones. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of BioMed Research International is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)