Reversal of MRP7 (ABCC10)-Mediated Multidrug Resistance by Tariquidar.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Multidrug resistance protein 7 (MRP7, ABCC10) is a recently discovered member of the ATP-binding cassette (ABC) family which are capable of conferring resistance to a variety of anticancer drugs, including taxanes and nucleoside analogs, in vivo. MRP7 is highly expressed in non-small cell lung cancer cells, and Mrp7-KO mice are highly sensitive to paclitaxel, making MRP7 an attractive chemotherapeutic target of non-small cell lung cancer. However, only a few inhibitors of MRP7 are currently identified, with none of them having progressed to clinical trials. We used MRP7-expressing cells to investigate whether tariquidar, a third generation inhibitor of P-glycoprotein, could inhibit MRP7-mediated multidrug resistance (MDR). We found that tariquidar, at 0.1 and 0.3 µM, significantly potentiated the sensitivity of MRP7-transfected HEK293 cells to MRP7 substrates and increased the intracellular accumulation of paclitaxel. We further demonstrated that tariquidar directly impaired paclitaxel efflux and could downregulate MRP7 protein expression in a concentration- and time-dependent manner after prolonged treatment. Our findings suggest that tariquidar, at pharmacologically achievable concentrations, reverses MRP7-mediated MDR through inhibition of MRP7 protein expression and function, and thus represents a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)