Increase of Long-Term ‘Diabesity’ Risk, Hyperphagia, and Altered Hypothalamic Neuropeptide Expression in Neonatally Overnourished ‘Small-For-Gestational-Age’ (SGA) Rats.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and ‘diabesity’ risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. Methods and Findings: By rearing in normal (NL) vs. small litters (SL), small-for-gestational-age (SGA) rats were neonatally exposed to either normal (SGA-in-NL) or over-feeding (SGA-in-SL), and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL). SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60), as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05), and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern ‘westernized’ lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05). Lasercapture microdissection (LMD)-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC) revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc) in SGA-in-SL rats (p<0.05). Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy), agouti-related-peptide (Agrp) and galanin (Gal)) was not significantly altered. In essence, the ‘orexigenic index’, proposed here as a neuroendocrine ‘net-indicator’, was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01), correlated to food intake (p<0.05). Conclusion: Adult SGA rats developed increased ‘diabesity’ risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding appears to be a critical long-term risk factor in ‘small-for-gestational-age babies’. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)