p53-directed translational control can shape and expand the universe of p53 target genes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9437445 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5403 (Electronic) Linking ISSN: 13509047 NLM ISO Abbreviation: Cell Death Differ Subsets: MEDLINE
    • Publication Information:
      Publication: <2003->: London : Nature Publishing Group
      Original Publication: London : Edward Arnold, c1994-
    • Subject Terms:
    • Abstract:
      The increasing number of genome-wide transcriptome analyses focusing on p53-induced cellular responses in many cellular contexts keeps adding to the already numerous p53-regulated transcriptional networks. To investigate post-transcriptional controls as an additional dimension of p53-directed gene expression responses, we performed a translatome analysis through polysomal profiling on MCF7 cells upon 16 hours of doxorubicin or nutlin-3a treatment. The comparison between the transcriptome and the translatome revealed a considerable level of uncoupling, characterized by genes whose transcription variations did not correlate with translation variations. Interestingly, uncoupled genes were associated with apoptosis, DNA and RNA metabolism and cell cycle functions, suggesting that post-transcriptional control can modulate classical p53-regulated responses. Furthermore, even for well-established p53 targets that were differentially expressed both at the transcriptional and translational levels, quantitative differences between the transcriptome, subpolysomal and polysomal RNAs were evident. As we searched mechanisms underlying gene expression uncoupling, we identified the p53-dependent modulation of six RNA-binding proteins, where hnRNPD (AUF1) and CPEB4 are direct p53 transcriptional targets, whereas SRSF1, DDX17, YBX1 and TARDBP are indirect targets (genes modulated preferentially in the subpolysomal or polysomal mRNA level) modulated at the translational level in a p53-dependent manner. In particular, YBX1 translation appeared to be reduced by p53 via two different mechanisms, one related to mTOR inhibition and the other to miR-34a expression. Overall, we established p53 as a master regulator of translational control and identified new p53-regulated genes affecting translation that can contribute to p53-dependent cellular responses.
    • References:
      Cell Rep. 2012 Feb 23;1(2):110-7. (PMID: 22545246)
      Genes Dev. 2009 Apr 1;23(7):862-76. (PMID: 19293287)
      Cell. 2013 Apr 25;153(3):654-65. (PMID: 23622248)
      Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5401-6. (PMID: 17372198)
      Cell Rep. 2013 May 30;3(5):1346-54. (PMID: 23684607)
      Ageing Res Rev. 2012 Sep;11(4):460-72. (PMID: 22542725)
      FEBS J. 2013 Dec;280(24):6498-507. (PMID: 24119020)
      J Natl Cancer Inst. 2012 Jan 18;104(2):133-46. (PMID: 22205655)
      RNA. 2009 Jan;15(1):104-15. (PMID: 19029303)
      FEBS Lett. 2008 Jun 18;582(14):1977-86. (PMID: 18342629)
      J Biol Chem. 2003 Sep 19;278(38):36435-44. (PMID: 12788948)
      Nucleic Acids Res. 2012 Jun;40(11):4727-41. (PMID: 22351747)
      Cancer Res. 2010 Aug 1;70(15):6325-35. (PMID: 20647325)
      J Proteome Res. 2012 Nov 2;11(11):5464-78. (PMID: 23039052)
      Nature. 2012 May 02;485(7396):109-13. (PMID: 22552098)
      Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001057. (PMID: 20182617)
      Clin Chem. 2009 Apr;55(4):611-22. (PMID: 19246619)
      Nucleic Acids Res. 2013 Oct;41(18):8637-53. (PMID: 23892287)
      J Cell Physiol. 2011 Dec;226(12):3433-41. (PMID: 21344396)
      Methods. 2009 Jul;48(3):301-5. (PMID: 19426805)
      Nature. 2009 Jul 23;460(7254):529-33. (PMID: 19626115)
      Nat Protoc. 2009;4(1):44-57. (PMID: 19131956)
      Cell Death Differ. 2006 Jun;13(6):1027-36. (PMID: 16557269)
      Mol Cancer Res. 2012 Sep;10(9):1216-27. (PMID: 22859706)
      Translation (Austin). 2014 Jan 29;2(1):e27738. (PMID: 26779400)
      BMC Genomics. 2012 Jun 06;13:220. (PMID: 22672192)
      Cell Cycle. 2013 Apr 15;12(8):1211-24. (PMID: 23518503)
      Cold Spring Harb Perspect Biol. 2012 Jul 01;4(7):a013706. (PMID: 22751155)
      Nat Rev Mol Cell Biol. 2008 May;9(5):402-12. (PMID: 18431400)
      Methods Mol Biol. 2003;224:79-87. (PMID: 12710667)
      Mol Cell. 2013 Apr 11;50(1):56-66. (PMID: 23478443)
      Cell. 2009 Feb 20;136(4):731-45. (PMID: 19239892)
      Nucleic Acids Res. 2011 Jan;39(1):213-24. (PMID: 20817677)
      Mol Cell. 2012 Jun 8;46(5):674-90. (PMID: 22681889)
      Genome Biol. 2013 Apr 17;14(4):R32. (PMID: 23594524)
      Proc Natl Acad Sci U S A. 2010 May 25;107(21):9614-9. (PMID: 20457941)
      Curr Protein Pept Sci. 2012 Jun;13(4):294-304. (PMID: 22708490)
      Cell Cycle. 2013 May 15;12(10):1477-9. (PMID: 23624837)
      Genes Dev. 2010 Oct 1;24(19):2146-56. (PMID: 20837656)
      Cold Spring Harb Perspect Biol. 2012 Oct 01;4(10):. (PMID: 22815232)
      Bioinformatics. 2014 Jan 15;30(2):289-91. (PMID: 24222209)
      Eur J Biochem. 2002 Oct;269(20):5016-23. (PMID: 12383260)
      Methods Enzymol. 2012;511:347-67. (PMID: 22713328)
      Nat Rev Genet. 2004 Jul;5(7):522-31. (PMID: 15211354)
      Cancer Cell. 2013 Sep 9;24(3):318-30. (PMID: 24029231)
      Carcinogenesis. 2006 Jul;27(7):1323-33. (PMID: 16531451)
      J Clin Invest. 2009 Dec;119(12):3530-43. (PMID: 19884656)
      Mol Ther. 2004 Jul;10(1):191-9. (PMID: 15272480)
      Acta Biochim Biophys Sin (Shanghai). 2013 Feb;45(2):80-6. (PMID: 23178914)
      Hum Mol Genet. 2010 Apr 15;19(8):1479-91. (PMID: 20093296)
      Adv Exp Med Biol. 2013;793:1-19. (PMID: 24104470)
      Nucleic Acids Res. 2013 Aug;41(15):7286-301. (PMID: 23775793)
      Nat Cell Biol. 2010 May;12(5):447-56. (PMID: 20364142)
      Cell. 2012 Jun 8;149(6):1393-406. (PMID: 22658674)
      Mol Cell Biol. 2000 Feb;20(3):760-9. (PMID: 10629032)
      Onco Targets Ther. 2014 Feb 20;7:325-32. (PMID: 24570594)
      Cancer Res. 2008 Oct 1;68(19):7730-5. (PMID: 18829526)
      Science. 2002 Apr 19;296(5567):550-3. (PMID: 11910072)
      Brief Funct Genomics. 2013 Jan;12(1):46-57. (PMID: 23242178)
      J Biol Chem. 2009 Mar 20;284(12):8023-32. (PMID: 19150980)
      Cell Death Differ. 2012 Dec;19(12):1992-2002. (PMID: 22790872)
    • Accession Number:
      0 (CPEB4 protein, human)
      0 (DNA-Binding Proteins)
      0 (HNRNPD protein, human)
      0 (Heterogeneous Nuclear Ribonucleoprotein D0)
      0 (Heterogeneous-Nuclear Ribonucleoprotein D)
      0 (Imidazoles)
      0 (Nuclear Proteins)
      0 (Piperazines)
      0 (RNA, Messenger)
      0 (RNA, Small Interfering)
      0 (RNA-Binding Proteins)
      0 (Tumor Suppressor Protein p53)
      0 (Y-Box-Binding Protein 1)
      0 (YBX1 protein, human)
      170974-22-8 (Serine-Arginine Splicing Factors)
      53IA0V845C (nutlin 3)
      63231-63-0 (RNA)
      80168379AG (Doxorubicin)
      9007-49-2 (DNA)
      EC 3.6.1.- (DDX17 protein, human)
      EC 3.6.4.13 (DEAD-box RNA Helicases)
    • Publication Date:
      Date Created: 20140614 Date Completed: 20150608 Latest Revision: 20211021
    • Publication Date:
      20240104
    • Accession Number:
      PMC4158691
    • Accession Number:
      10.1038/cdd.2014.79
    • Accession Number:
      24926617