Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Hindawi Publishing Corporation Country of Publication: Egypt NLM ID: 101627166 Publication Model: eCollection Cited Medium: Internet ISSN: 2314-7156 (Electronic) Linking ISSN: 23147156 NLM ISO Abbreviation: J Immunol Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Cairo, Egypt : Hindawi Publishing Corporation, [2014]-
    • Subject Terms:
    • Abstract:
      Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1 + or Ly6G + neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression.
    • References:
      J Leukoc Biol. 2016 Jun;99(6):811-23. (PMID: 26819319)
      Trends Immunol. 2010 Aug;31(8):318-24. (PMID: 20620114)
      Infect Immun. 2006 Dec;74(12):6528-39. (PMID: 16920786)
      Respir Res. 2013 Jul 27;14:78. (PMID: 23890251)
      Nat Methods. 2015 May;12(5):445-52. (PMID: 25775045)
      Blood. 2011 Apr 21;117(16):4349-57. (PMID: 21224471)
      Am J Pathol. 2014 Jun;184(6):1877-89. (PMID: 24726646)
      Med Mycol. 2011 Apr;49 Suppl 1:S7-S12. (PMID: 20718606)
      J Leukoc Biol. 2008 Jan;83(1):64-70. (PMID: 17884993)
      Blood. 2016 May 5;127(18):2173-81. (PMID: 27002116)
      Blood. 2013 Jan 3;121(1):241-2. (PMID: 23287627)
      Front Microbiol. 2016 Jul 13;7:1107. (PMID: 27468286)
      J Leukoc Biol. 2015 Sep;98(3):365-72. (PMID: 26019296)
      Am J Respir Cell Mol Biol. 2014 Feb;50(2):253-62. (PMID: 24010952)
      Eur Respir J. 2007 May;29(5):1020-32. (PMID: 17470623)
      PLoS Pathog. 2010 Apr 29;6(4):e1000873. (PMID: 20442864)
      J Cell Biochem. 2015 Sep;116(9):1831-6. (PMID: 25727365)
      J Appl Physiol (1985). 2003 Jul;95(1):426-34. (PMID: 12794101)
      Am J Physiol Lung Cell Mol Physiol. 2017 Apr 1;312(4):L556-L567. (PMID: 28188224)
      J Immunol. 2006 Mar 15;176(6):3717-24. (PMID: 16517740)
      Infect Immun. 2014 Aug;82(8):3199-205. (PMID: 24842927)
      Blood. 2010 Jul 29;116(4):625-7. (PMID: 20410504)
      Shock. 2011 Jun;35(6):604-9. (PMID: 21330942)
      Thorax. 2004 Apr;59(4):308-12. (PMID: 15047950)
      Physiol Rev. 2003 Apr;83(2):309-36. (PMID: 12663861)
      Am J Respir Cell Mol Biol. 2007 Nov;37(5):553-61. (PMID: 17600312)
      J Asthma. 2016 Sep;53(7):732-5. (PMID: 27043956)
      Infect Immun. 1989 May;57(5):1452-6. (PMID: 2651308)
      J Immunol. 2010 Nov 15;185(10):6190-7. (PMID: 20926800)
      Eur Respir Rev. 2011 Sep 1;20(121):156-74. (PMID: 21881144)
      J Immunol Methods. 2012 Jan 31;375(1-2):100-10. (PMID: 21996427)
      Trends Microbiol. 2001 Aug;9(8):382-9. (PMID: 11514221)
      J Infect Dis. 2009 Aug 15;200(4):647-56. (PMID: 19591573)
      Immunol Rev. 2016 Sep;273(1):299-311. (PMID: 27558342)
      Int J Med Microbiol. 2014 Nov;304(8):1160-8. (PMID: 25200858)
      Results Immunol. 2015 Dec 21;6:5-7. (PMID: 26870635)
      Int J Immunogenet. 2009 Oct;36(5):289-99. (PMID: 19744035)
      Nat Rev Immunol. 2013 Mar;13(3):159-75. (PMID: 23435331)
      Am J Physiol Lung Cell Mol Physiol. 2015 Oct 1;309(7):L639-52. (PMID: 26254421)
      Sci Transl Med. 2012 Dec 19;4(165):165rv13. (PMID: 23253612)
      Trends Immunol. 2016 May;37(5):334-345. (PMID: 27083489)
      Annu Rev Immunol. 2011;29:1-21. (PMID: 20936972)
      Cell Host Microbe. 2016 Jan 13;19(1):79-90. (PMID: 26749442)
      J Immunol. 2009 Oct 15;183(8):5171-9. (PMID: 19783686)
      Blood. 2012 Aug 16;120(7):1489-98. (PMID: 22661700)
    • Accession Number:
      0 (Antigens, Ly)
      0 (Gr-1 protein, mouse)
      0 (Ly6G antigen, mouse)
      0 (Receptors, Chemokine)
    • Publication Date:
      Date Created: 20180327 Date Completed: 20180831 Latest Revision: 20211204
    • Publication Date:
      20240105
    • Accession Number:
      PMC5822902
    • Accession Number:
      10.1155/2018/5379085
    • Accession Number:
      29577051