Engineering linear, branched-chain triterpene metabolism in monocots.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of the Society for Experimental Biology, Association of Applied Biologists Country of Publication: England NLM ID: 101201889 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1467-7652 (Electronic) Linking ISSN: 14677644 NLM ISO Abbreviation: Plant Biotechnol J Subsets: MEDLINE
    • Publication Information:
      Publication: 2014- : Oxford Wiley on behalf of the Society for Experimental Biology, Association of Applied Biologists
      Original Publication: [Oxford] : Blackwell Pub., c2003-
    • Subject Terms:
    • Abstract:
      Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T 0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.
      (© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
    • References:
      Phytochemistry. 2014 Feb;98:85-91. (PMID: 24393458)
      Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18232-7. (PMID: 19011084)
      Annu Rev Plant Biol. 2009;60:335-55. (PMID: 19575586)
      Appl Microbiol Biotechnol. 2005 Feb;66(5):486-96. (PMID: 15630516)
      New Phytol. 2011 Jul;191(2):334-47. (PMID: 21623796)
      Metab Eng. 2017 Jul;42:185-193. (PMID: 28687337)
      Plant Biotechnol J. 2003 Mar;1(2):113-21. (PMID: 17147748)
      Biotechnol Bioeng. 2015 Sep;112(9):1854-64. (PMID: 25788404)
      Science. 2007 Apr 6;316(5821):73-6. (PMID: 17412950)
      BMC Biotechnol. 2011 Jul 11;11:74. (PMID: 21745390)
      Plant Physiol. 2001 Dec;127(4):1539-55. (PMID: 11743099)
      Biotechnol Bioeng. 1989 Sep;34(6):755-62. (PMID: 18588162)
      Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12260-5. (PMID: 21746901)
      Plant Physiol. 2016 Feb;170(2):702-16. (PMID: 26603654)
      Planta. 2012 Sep;236(3):867-77. (PMID: 22729821)
      Arch Biochem Biophys. 2004 Feb 1;422(1):110-8. (PMID: 14725863)
      Plant J. 2016 Jul;87(1):16-37. (PMID: 26867713)
      J Am Chem Soc. 1966 Oct 20;88(20):4751-2. (PMID: 5918047)
      Biotechnol Bioeng. 2015 Aug;112(8):1523-32. (PMID: 25728701)
      Biotechnol Bioeng. 1982 Jan;24(1):193-205. (PMID: 18546110)
      Biochemistry. 2014 Dec 9;53(48):7570-81. (PMID: 25393512)
      Transgenic Res. 1996 May;5(3):213-8. (PMID: 8673150)
      Plant Cell Rep. 2006 Aug;25(8):784-91. (PMID: 16528567)
      Biochem Biophys Res Commun. 1992 May 29;185(1):323-9. (PMID: 1599468)
      Curr Opin Biotechnol. 2016 Dec;42:126-132. (PMID: 27132124)
      Biotechnol Bioeng. 1985 Mar;27(3):286-95. (PMID: 18553671)
      J Biomed Biotechnol. 2012;2012:637125. (PMID: 22791962)
      Planta. 2015 Sep;242(3):693-708. (PMID: 26223979)
      New Phytol. 2013 Oct;200(1):27-43. (PMID: 23668256)
      Plant Physiol. 2000 Aug;123(4):1257-68. (PMID: 10938345)
      Nat Protoc. 2009;4(5):638-49. (PMID: 19360019)
      Bioresour Technol. 2013 Apr;133:232-9. (PMID: 23428820)
      Adv Biochem Eng Biotechnol. 2015;148:63-106. (PMID: 25583224)
      New Phytol. 2011 Jul;191(2):432-48. (PMID: 21501172)
      Plant Biotechnol J. 2018 Jun;16(6):1110-1124. (PMID: 29069530)
      Nat Biotechnol. 2006 Nov;24(11):1441-7. (PMID: 17057703)
      Plant Biotechnol J. 2013 Jun;11(5):628-39. (PMID: 23425633)
      Prog Lipid Res. 2012 Apr;51(2):95-148. (PMID: 22197147)
      Plant Biotechnol J. 2007 Nov;5(6):746-58. (PMID: 17714440)
      Chem Rev. 2011 Oct 12;111(10):6423-51. (PMID: 21902244)
      J Acad Nutr Diet. 2013 Nov;113(11):1494-503. (PMID: 24144075)
      Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1049-1057. (PMID: 27320012)
      Plant Biotechnol J. 2013 Feb;11(2):169-96. (PMID: 23171352)
      J Biol Chem. 2007 Jun 8;282(23):17002-13. (PMID: 17426032)
      Biotechnol Bioeng. 2014 Mar;111(3):493-503. (PMID: 24122424)
      BMC Biotechnol. 2015 Jun 02;15:45. (PMID: 26033328)
      J Am Chem Soc. 1975 Mar 5;97(5):1252-3. (PMID: 1133387)
      Plant Physiol. 2009 Jul;150(3):1111-21. (PMID: 19403729)
      BMC Plant Biol. 2017 May 22;17(1):88. (PMID: 28532507)
      Plant Physiol. 1995 Dec;109(4):1337-1343. (PMID: 12228673)
      Plant J. 2002 Apr;30(2):123-32. (PMID: 12000449)
      Adv Biochem Eng Biotechnol. 2015;148:161-99. (PMID: 25636485)
      Arch Biochem Biophys. 2006 Apr 15;448(1-2):93-103. (PMID: 16307722)
      Science. 2000 Jan 14;287(5451):303-5. (PMID: 10634784)
      Plant Sci. 2015 Oct;239:106-14. (PMID: 26398795)
      Curr Opin Plant Biol. 2002 Apr;5(2):151-7. (PMID: 11856612)
      Nat Biotechnol. 2003 Sep;21(9):1082-7. (PMID: 12897790)
      Planta. 2004 Oct;219(6):982-92. (PMID: 15605175)
      Mol Phylogenet Evol. 2008 May;47(2):488-505. (PMID: 18358746)
      Plant Cell. 2015 Sep;27(9):2616-36. (PMID: 26362606)
      Curr Opin Biotechnol. 2008 Apr;19(2):181-9. (PMID: 18394878)
    • Grant Information:
      201006141622 International National Institute of Food and Agriculture - USDA
    • Contributed Indexing:
      Keywords: Brachypodium; Sorghum; botryococcene; metabolic engineering; monocot; triterpene
    • Accession Number:
      0 (Plant Proteins)
      0 (Triterpenes)
      7QWM220FJH (Squalene)
      EC 2.5.1.10 (Geranyltranstransferase)
      EC 2.5.1.21 (Farnesyl-Diphosphate Farnesyltransferase)
    • Publication Date:
      Date Created: 20180707 Date Completed: 20190603 Latest Revision: 20220408
    • Publication Date:
      20240105
    • Accession Number:
      PMC6335073
    • Accession Number:
      10.1111/pbi.12983
    • Accession Number:
      29979490