Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Berlin Country of Publication: Germany NLM ID: 101140988 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1619-7089 (Electronic) Linking ISSN: 16197070 NLM ISO Abbreviation: Eur J Nucl Med Mol Imaging Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer-Verlag Berlin, 2002-
    • Subject Terms:
    • Abstract:
      Background: Recurrence in glioblastoma patients often occur close to the original tumour and indicates that the current treatment is inadequate for local tumour control. In this study, we explored the feasibility of using multi-modality imaging at the time of radiotherapy planning. Specifically, we aimed to identify parameters from pre-treatment PET and MRI with potential to predict tumour recurrence.
      Materials and Methods: Sixteen patients were prospectively recruited and treated according to established guidelines. Multi-parametric imaging with 18 F-FET PET/CT and 18 F-FDG PET/MR including diffusion and dynamic contrast enhanced perfusion MRI were performed before radiotherapy. Correlations between imaging parameters were calculated. Imaging was related to the voxel-wise outcome at the time of tumour recurrence. Within the radiotherapy target, median differences of imaging parameters in recurring and non-recurring voxels were calculated for contrast-enhancing lesion (CEL), non-enhancing lesion (NEL), and normal appearing grey and white matter. Logistic regression models were created to predict the patient-specific probability of recurrence. The most important parameters were identified using standardized model coefficients.
      Results: Significant median differences between recurring and non-recurring voxels were observed for FDG, FET, fractional anisotropy, mean diffusivity, mean transit time, extra-vascular, extra-cellular blood volume and permeability derived from scans prior to chemo-radiotherapy. Tissue-specific patterns of voxel-wise correlations were observed. The most pronounced correlations were observed for 18 F-FDG- and 18 F-FET-uptake in CEL and NEL. Voxel-wise modelling of recurrence probability resulted in area under the receiver operating characteristic curve of 0.77 from scans prior to therapy. Overall, FET proved to be the most important parameter for recurrence prediction.
      Conclusion: Multi-parametric imaging before radiotherapy is feasible and significant differences in imaging parameters between recurring and non-recurring voxels were observed. Combining parameters in a logistic regression model enabled patient-specific maps of recurrence probability, where 18 F-FET proved to be most important. This strategy could enable risk-adapted radiotherapy planning.
    • References:
      Int J Radiat Oncol Biol Phys. 2009 Feb 1;73(2):479-85. (PMID: 18834673)
      J Nucl Med. 2004 Aug;45(8):1293-8. (PMID: 15299051)
      Neuroimage. 2003 Nov;20(3):1714-22. (PMID: 14642481)
      Radiother Oncol. 2016 Jan;118(1):35-42. (PMID: 26777122)
      Med Image Anal. 2011 Aug;15(4):622-39. (PMID: 20688559)
      Lancet Oncol. 2009 May;10(5):459-66. (PMID: 19269895)
      Eur J Nucl Med Mol Imaging. 2017 Mar;44(3):373-381. (PMID: 27554774)
      Neuro Oncol. 2014 Jul;16(7):984-90. (PMID: 24637230)
      Am J Cancer Res. 2016 Aug 01;6(8):1599-608. (PMID: 27648352)
      Neuroimage. 2016 Jan 15;125:1063-1078. (PMID: 26481672)
      Brain. 2005 Mar;128(Pt 3):678-87. (PMID: 15689365)
      N Engl J Med. 2005 Mar 10;352(10):987-96. (PMID: 15758009)
      Lancet Oncol. 2006 May;7(5):392-401. (PMID: 16648043)
      J Neurooncol. 2016 Oct;130(1):181-192. (PMID: 27502603)
      J Stat Softw. 2010;33(1):1-22. (PMID: 20808728)
      Acta Oncol. 2011 Aug;50(6):777-83. (PMID: 21767174)
      J Magn Reson Imaging. 2008 Apr;27(4):754-62. (PMID: 18383268)
      Neuroimage. 2014 Jan 1;84:206-16. (PMID: 23994317)
      Eur J Nucl Med Mol Imaging. 2017 Dec;44(13):2257-2265. (PMID: 28831534)
      Radiat Res. 2017 Sep;188(3):303-313. (PMID: 28723274)
      Semin Radiat Oncol. 2014 Oct;24(4):259-64. (PMID: 25219810)
      IEEE Trans Med Imaging. 2001 Jan;20(1):45-57. (PMID: 11293691)
      Radiother Oncol. 2010 Dec;97(3):377-81. (PMID: 20855119)
      Eur J Nucl Med Mol Imaging. 2016 Jan;43(1):103-112. (PMID: 26363903)
      AJNR Am J Neuroradiol. 2006 Oct;27(9):1969-74. (PMID: 17032877)
      Clin Cancer Res. 2004 Nov 1;10(21):7163-70. (PMID: 15534088)
      Neuroimage. 2008 Oct 15;43(1):29-35. (PMID: 18672074)
      Magn Reson Med. 2009 Nov;62(5):1270-81. (PMID: 19780145)
      Neuroimage. 2011 Feb 1;54(3):2033-44. (PMID: 20851191)
      Radiother Oncol. 2017 Mar;122(3):380-386. (PMID: 28110959)
      NMR Biomed. 2013 Aug;26(8):1042-9. (PMID: 23832526)
      J Clin Oncol. 2010 Apr 10;28(11):1963-72. (PMID: 20231676)
      Neuroimage. 2006 Jul 1;31(3):1116-28. (PMID: 16545965)
      Strahlenther Onkol. 2012 Apr;188(4):334-9. (PMID: 22349712)
      Acta Neuropathol. 2016 Jun;131(6):803-20. (PMID: 27157931)
      Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S20-7. (PMID: 20171513)
      J Neurooncol. 2003 Sep;64(3):227-37. (PMID: 14558598)
    • Contributed Indexing:
      Keywords: FET; Glioblastoma; MRI; PET; Radiotherapy; Response prediction
    • Accession Number:
      0Z5B2CJX4D (Fluorodeoxyglucose F18)
    • Publication Date:
      Date Created: 20181003 Date Completed: 20190612 Latest Revision: 20200309
    • Publication Date:
      20240105
    • Accession Number:
      10.1007/s00259-018-4180-3
    • Accession Number:
      30276440