Biomechanical Analysis Using FEA and Experiments of Metal Plate and Bone Strut Repair of a Femur Midshaft Segmental Defect.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Hindawi Pub. Co Country of Publication: United States NLM ID: 101600173 Publication Model: eCollection Cited Medium: Internet ISSN: 2314-6141 (Electronic) NLM ISO Abbreviation: Biomed Res Int Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, NY : Hindawi Pub. Co.
    • Subject Terms:
    • Abstract:
      This investigation assessed the biomechanical performance of the metal plate and bone strut technique for fixing recalcitrant nonunions of femur midshaft segmental defects, which has not been systematically done before. A finite element (FE) model was developed and then validated by experiments with the femur in 15 deg of adduction at a subclinical hip force of 1 kN. Then, FE analysis was done with the femur in 15 deg of adduction at a hip force of 3 kN representing about 4 x body weight for a 75 kg person to examine clinically relevant cases, such as an intact femur plus 8 different combinations of a lateral metal plate of fixed length, a medial bone strut of varying length, and varying numbers and locations of screws to secure the plate and strut around a midshaft defect. Using the traditional "high stiffness" femur-implant construct criterion, the repair technique using both a lateral plate and a medial strut fixed with the maximum possible number of screws would be the most desirable since it had the highest stiffness (1948 N/mm); moreover, this produced a peak femur cortical Von Mises stress (92 MPa) which was below the ultimate tensile strength of cortical bone. Conversely, using the more modern "low stiffness" femur-implant construct criterion, the repair technique using only a lateral plate but no medial strut provided the lowest stiffness (606 N/mm), which could potentially permit more in-line interfragmentary motion (i.e., perpendicular to the fracture gap, but in the direction of the femur shaft long axis) to enhance callus formation for secondary-type fracture healing; however, this also generated a peak femur cortical Von Mises stress (171 MPa) which was above the ultimate tensile strength of cortical bone.
    • References:
      J Bone Joint Surg Am. 1999 Feb;81(2):177-90. (PMID: 10073581)
      Proc Inst Mech Eng H. 2011 Sep;225(9):845-56. (PMID: 22070022)
      J Mech Behav Biomed Mater. 2012 Dec;16:121-35. (PMID: 23182385)
      Am J Orthop (Belle Mead NJ). 2000 Jan;29(1):45-7. (PMID: 10647519)
      Injury. 2007 May;38 Suppl 2:S55-63. (PMID: 17920419)
      J Arthroplasty. 2016 Aug;31(8):1849-56. (PMID: 26989031)
      J Arthroplasty. 2014 Mar;29(3):495-500. (PMID: 24035619)
      J Bone Joint Surg Br. 1993 Sep;75(5):804-7. (PMID: 8376445)
      Med Eng Phys. 1996 Mar;18(2):122-31. (PMID: 8673318)
      Injury. 2011 Sep;42 Suppl 2:S56-63. (PMID: 21752369)
      Proc Inst Mech Eng H. 2012 Aug;226(8):645-51. (PMID: 23057237)
      Med Eng Phys. 2000 Nov;22(9):613-24. (PMID: 11259930)
      J Biomech. 1998 Sep;31(9):841-6. (PMID: 9802785)
      J Biomech. 2001 Jul;34(7):859-71. (PMID: 11410170)
      Proc Inst Mech Eng H. 2009 Apr;223(3):303-14. (PMID: 19405436)
      Int Orthop. 2011 Aug;35(8):1229-36. (PMID: 21136053)
      Proc Inst Mech Eng H. 2011 Nov;225(11):1050-60. (PMID: 22292203)
      J Bone Joint Surg Am. 2009 Aug;91(8):1985-94. (PMID: 19651958)
      Med Eng Phys. 2013 Apr;35(4):422-32. (PMID: 22809675)
      J Biomech. 1997 Sep;30(9):933-41. (PMID: 9302616)
      J Biomech Eng. 2007 Feb;129(1):12-9. (PMID: 17227093)
      J Biomech Eng. 2014 Sep;136(9):091002. (PMID: 24828985)
      J Bone Joint Surg Br. 2008 Nov;90(11):1522-7. (PMID: 18978277)
      J Orthop Res. 2006 Jul;24(7):1438-53. (PMID: 16732617)
      Clin Orthop Relat Res. 2004 Aug;(425):50-4. (PMID: 15292787)
      J Biomech Eng. 2011 Jul;133(7):074503. (PMID: 21823752)
      ANZ J Surg. 2001 Jun;71(6):354-61. (PMID: 11409021)
      Proc Inst Mech Eng H. 2011 Sep;225(9):857-65. (PMID: 22070023)
      Proc Inst Mech Eng H. 2008 Nov;222(8):1175-83. (PMID: 19143412)
      J Orthop Trauma. 2005 Jan;19(1):36-42. (PMID: 15668582)
      J Orthop Trauma. 2007 Apr;21(4):248-53. (PMID: 17414552)
      J Biomech. 2001 Jun;34(6):773-81. (PMID: 11470115)
      Clin Orthop Relat Res. 2001 May;(386):203-9. (PMID: 11347837)
      Proc Inst Mech Eng H. 2012 Apr;226(4):320-9. (PMID: 22611872)
      J Biomech. 2008 Nov 14;41(15):3229-35. (PMID: 18805533)
      J Biomech. 2008 Nov 14;41(15):3282-4. (PMID: 18829031)
      Med Eng Phys. 2004 Mar;26(2):93-108. (PMID: 15036177)
      J Bone Joint Surg Am. 2003 Mar;85-A(3):436-40. (PMID: 12637428)
      Clin Orthop Relat Res. 2005 Feb;(431):50-6. (PMID: 15685055)
      Injury. 2008 Feb;39(2):181-6. (PMID: 18164006)
      J Bone Joint Surg Am. 2008 May;90(5):1068-77. (PMID: 18451400)
      Biomed Eng Online. 2005 Jul 27;4:46. (PMID: 16045807)
      Med Eng Phys. 2012 Oct;34(8):1041-8. (PMID: 22153321)
      Nebr Med J. 1994 Aug;79(8):300-2. (PMID: 7990996)
      J Biomech Eng. 2009 Sep;131(9):094503. (PMID: 19725700)
    • Publication Date:
      Date Created: 20181114 Date Completed: 20190227 Latest Revision: 20190227
    • Publication Date:
      20240105
    • Accession Number:
      PMC6211160
    • Accession Number:
      10.1155/2018/4650308
    • Accession Number:
      30420962