Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2000-
    • Subject Terms:
    • Abstract:
      Background: Most eukaryotic genes comprise exons and introns thus requiring the precise removal of introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze this step by recognizing motifs on the transcript in order to remove the introns. A process which is dependent on precise definition of exon-intron borders by splice sites, which are consequently highly conserved across species. Only very few combinations of terminal dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG splice sites on the DNA level.
      Results: Here we investigate the occurrence of diverse combinations of dinucleotides at predicted splice sites. Analyzing 121 plant genome sequences based on their annotation revealed strong splice site conservation across species, annotation errors, and true biological divergence from canonical splice sites. The frequency of non-canonical splice sites clearly correlates with their divergence from canonical ones indicating either an accumulation of probably neutral mutations, or evolution towards canonical splice sites. Strong conservation across multiple species and non-random accumulation of substitutions in splice sites indicate a functional relevance of non-canonical splice sites. The average composition of splice sites across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were incorporated to validate non-canonical splice site predictions through gaps in sequencing reads alignments and to demonstrate the expression of affected genes.
      Conclusion: We conclude that bona fide non-canonical splice sites are present and appear to be functionally relevant in most plant genomes, although at low abundance.
    • References:
      EMBO J. 1999 Jun 1;18(11):3119-32. (PMID: 10357823)
      Genomics. 2011 Aug;98(2):90-5. (PMID: 21624457)
      Genomics. 2018 Sep;110(5):310-317. (PMID: 29247768)
      Biochim Biophys Acta. 2005 May 1;1728(3):105-14. (PMID: 15780972)
      Biol Direct. 2006 Sep 19;1:29. (PMID: 16984643)
      BMC Genomics. 2015;16 Suppl 2:S9. (PMID: 25707295)
      Plant Mol Biol. 2006 Jan;60(1):69-85. (PMID: 16463100)
      EMBO J. 1991 Sep;10(9):2635-44. (PMID: 1868837)
      PLoS One. 2017 May 17;12(5):e0175393. (PMID: 28520720)
      PLoS One. 2010 Mar 10;5(3):e9490. (PMID: 20224823)
      Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
      Mob DNA. 2015 Apr 01;6:7. (PMID: 25960782)
      Biomed Res Int. 2013;2013:264314. (PMID: 23509698)
      Front Genet. 2012 Apr 13;3:55. (PMID: 22518112)
      Nucleic Acids Res. 2013 Jul;41(Web Server issue):W123-8. (PMID: 23700307)
      Cell. 2016 Jul 14;166(2):481-491. (PMID: 27293186)
      Plant J. 2017 Jan;89(2):291-309. (PMID: 27664942)
      J Virol. 1995 Nov;69(11):7324-7. (PMID: 7474163)
      Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
      BMC Bioinformatics. 2005 Feb 15;6:31. (PMID: 15713233)
      Biol Direct. 2012 Apr 16;7:11. (PMID: 22507701)
      Trends Biochem Sci. 2016 Jan;41(1):33-45. (PMID: 26682498)
      Nucleic Acids Res. 2000 Nov 1;28(21):4364-75. (PMID: 11058137)
      Nucleic Acids Res. 2014;42(16):10564-78. (PMID: 25123659)
      Nat Rev Genet. 2016 Jul;17(7):407-421. (PMID: 27240813)
      Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122-7. (PMID: 9122158)
      Front Mol Biosci. 2018 Jul 05;5:62. (PMID: 30027092)
      Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):61-76. (PMID: 23074130)
      Nucleic Acids Res. 2006;34(14):3955-67. (PMID: 16914448)
      Front Genet. 2017 Apr 11;8:38. (PMID: 28443131)
      Bioinformatics. 2015 Oct 1;31(19):3210-2. (PMID: 26059717)
      J Mol Biol. 1994 Jun 10;239(3):357-65. (PMID: 8201617)
      Nucleic Acids Res. 1989 Mar 25;17(6):2159-80. (PMID: 2704616)
      Biochem Biophys Res Commun. 2012 Jun 29;423(2):289-94. (PMID: 22640740)
      PLoS One. 2011;6(9):e24542. (PMID: 21935421)
      Genomics Inform. 2015 Dec;13(4):112-8. (PMID: 26865841)
      Cold Spring Harb Symp Quant Biol. 1987;52:901-5. (PMID: 2456887)
      Cell. 2009 Feb 20;136(4):701-18. (PMID: 19239890)
      PLoS One. 2019 May 21;14(5):e0216233. (PMID: 31112551)
      Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21. (PMID: 21062823)
      BMC Evol Biol. 2014 Mar 16;14(1):50. (PMID: 24629165)
      Int J Mol Sci. 2013 Apr 08;14(4):7617-41. (PMID: 23567274)
      PLoS One. 2010 Aug 18;5(8):e12271. (PMID: 20805885)
      Nature. 2015 May 21;521(7552):371-375. (PMID: 25970246)
      PLoS One. 2016 Oct 6;11(10):e0164321. (PMID: 27711162)
      RNA. 1997 Jun;3(6):586-601. (PMID: 9174094)
      BMC Plant Biol. 2014 Sep 25;14:249. (PMID: 25249410)
      Nucleic Acids Res. 1991 Jul 25;19(14):3795-8. (PMID: 1713664)
      BMC Res Notes. 2017 Dec 4;10(1):667. (PMID: 29202864)
      Mol Cell. 1997 Dec;1(1):151-60. (PMID: 9659912)
      DNA Res. 2015 Dec;22(6):495-503. (PMID: 26581719)
      PLoS Comput Biol. 2011 Sep;7(9):e1002150. (PMID: 21935348)
      Cold Spring Harb Perspect Biol. 2011 Jul 01;3(7):. (PMID: 21441581)
      Plant Physiol. 2007 Jul;144(3):1632-41. (PMID: 17496110)
      Plant J. 2017 Feb;89(4):789-804. (PMID: 27862469)
      Curr Protoc Bioinformatics. 2015 Sep 03;51:11.14.1-11.14.19. (PMID: 26334920)
      Nat Rev Genet. 2007 Oct;8(10):749-61. (PMID: 17726481)
      Bioinformatics. 2013 Jan 1;29(1):15-21. (PMID: 23104886)
      PLoS One. 2009;4(3):e4680. (PMID: 19262691)
      Science. 2009 Apr 10;324(5924):268-72. (PMID: 19359590)
      Genome Biol. 2016 Mar 23;17:53. (PMID: 27009100)
      Science. 2007 Jul 20;317(5836):338-42. (PMID: 17641193)
      EMBO J. 1986 Oct;5(10):2419-25. (PMID: 16453710)
      Nature. 2016 Oct 27;538(7626):533-536. (PMID: 27760113)
      Cell. 1996 Nov 1;87(3):405-13. (PMID: 8898194)
      Plant Cell. 2004 May;16(5):1340-52. (PMID: 15100401)
      J Mol Evol. 1994 Aug;39(2):144-50. (PMID: 7932778)
      J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
      Curr Biol. 2003 Sep 2;13(17):1512-7. (PMID: 12956953)
      Bioinformatics. 2005 Nov 1;21 Suppl 3:iii20-30. (PMID: 16306388)
      Sci Rep. 2017 Jul 17;7(1):5636. (PMID: 28717203)
      Nucleic Acids Res. 2010 Nov;38(20):7112-21. (PMID: 20615898)
      Proc Natl Acad Sci U S A. 1977 Aug;74(8):3171-5. (PMID: 269380)
    • Contributed Indexing:
      Keywords: Annotation; Comparative genomics; Evolution; Gene expression; Gene structure; Natural diversity; Splicing; Transcriptomics
    • Accession Number:
      0 (RNA Splice Sites)
    • Publication Date:
      Date Created: 20181231 Date Completed: 20190411 Latest Revision: 20231005
    • Publication Date:
      20240105
    • Accession Number:
      PMC6310983
    • Accession Number:
      10.1186/s12864-018-5360-z
    • Accession Number:
      30594132