Modulatory effects of cannabinoids on brain neurotransmission.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Cohen K;Cohen K; Weizman A; Weizman A; Weinstein A; Weinstein A
  • Source:
    The European journal of neuroscience [Eur J Neurosci] 2019 Aug; Vol. 50 (3), pp. 2322-2345. Date of Electronic Publication: 2019 Apr 08.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: : Oxford : Wiley-Blackwell
      Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
    • Subject Terms:
    • Abstract:
      Recreational and chronic cannabis use has been associated with a range of acute and chronic effects including; anti-nociceptive actions, anxiety, depression, psychotic symptoms and neurocognitive impairments. The mechanisms underlying cannabinoid-based drugs effects are not fully known but given the neuro-modulatory functions of the endocannabinoid system, it seems likely that agonistic activity at the cannabinoid type-1 receptors (CB 1 ) might modulate the functions of other neurotransmitter systems. The present review has summarized the currently available pre-clinical and clinical data on the interactions of CB 1 and cannabinoid type-2 receptors (CB 2 ) with the central neurotransmitters; dopamine, serotonin, noradrenaline, GABA, glutamate and opioids. Acute and chronic exposures to cannabinoids exert pharmacological alterations in the mammalian brain that have profound implications for our understanding of the neuropharmacology of cannabinoid-based drugs and their effects on mental health and the brain. A recent emergence uses of cannabis for medical purpose together with legalization and decriminalization of cannabis and increasing use of highly potent synthetic cannabinoids raise a growing concern over the effects of cannabinoids and their interaction with other neurotransmitters on physical and mental health.
      (© 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
    • References:
      Abboussi, O., Tazi, A., Paizanis, E., & El Ganouni, S. (2014) Chronic exposure to WIN55, 212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis. Pharmacol. Biochem. Be., 120, 95-102.
      Acquas, E., Pisanu, A., Marrocu, P., & Di Chiara, G. (2000) Cannabinoid CB1 receptor agonists increase rat cortical and hippocampal acetylcholine release in vivo. Eur. J. Pharmacol., 401(2), 179-185.
      Acquas, E., Pisanu, A., Marrocu, P., Goldberg, S. R., & Di Chiara, G. (2001) Δ9-tetrahydrocannabinol enhances cortical and hippocampal acetylcholine release in vivo: a microdialysis study. Eur. J. Pharmacol., 419(2-3), 155-161.
      Albrecht, D. S., Skosnik, P. D., Vollmer, J. M., Brumbaugh, M. S., Perry, K. M., Mock, B. H., … Yoder, K. K. (2013) Striatal D2/D3 receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depen., 128(1), 52-57.
      Alcaro, A., Huber, R., & Panksepp, J. (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res. Rev., 56(2), 283-321.
      Amato, L., Minozzi, S., Mitrova, Z., Parmelli, E., Saulle, R., Cruciani, F., … Davoli, M. (2017) Systematic review of safeness and therapeutic efficacy of cannabis in patients with multiple sclerosis, neuropathic pain, and in oncological patients treated with chemotherapy. Epidemiol. Prev., 41(5-6), 279-293.
      van Amsterdam, J., Brunt, T., & van den Brink, W. (2015) The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J. Psychopharmacol., 29(3), 254-263.
      Andrews, N., Hogg, S., Gonzalez, L. E., & File, S. E. (1994) 5-HT1A receptors in the median raphe nucleus and dorsal hippocampus may mediate anxiolytic and anxiogenic behaviours respectively. Eur. J. Pharmacol., 264(3), 259-264.
      Arseneault, L., Cannon, M., Poulton, R., Murray, R., Caspi, A., & Moffitt, T. E. (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. Brit. Med. J., 325(7374), 1212-1213.
      Ashton, C. H. (2001) Pharmacology and effects of cannabis: a brief review. Brit. J. Psychiat., 178(2), 101-106.
      Aso, E., Renoir, T., Mengod, G., Ledent, C., Hamon, M., Maldonado, R., & Valverde, O. (2009) Lack of CB1 receptor activity impairs serotonergic negative feedback. J. Neurochem., 109(3), 935-944.
      Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiat., 46(9), 1309-1320.
      Auclair, N., Otani, S., Soubrie, P., & Crepel, F. (2000) Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J. Neurophysiol., 83(6), 3287-3293.
      Azad, S. C., Eder, M., Marsicano, G., Lutz, B., Zieglgänsberger, W., & Rammes, G. (2003) Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn. Memory, 10(2), 116-128.
      Bahorik, A. L., Sterling, S. A., Campbell, C. I., Weisner, C., Ramo, D., & Satre, D. D. (2018) Medical and non-medical marijuana use in depression: Longitudinal associations with suicidal ideation, everyday functioning, and psychiatry service utilization. J. Affect. Disorders, 241, 8-14.
      Balázsa, T., Bíró, J., Gullai, N., Ledent, C., & Sperlágh, B. (2008) CB1-cannabinoid receptors are involved in the modulation of non-synaptic [3H] serotonin release from the rat hippocampus. Neurochem. Int., 52(1-2), 95-102.
      Bambico, F. R., Katz, N., Debonnel, G., & Gobbi, G. (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci., 27(43), 11700-11711.
      Bambico, F. R., Nguyen, N.-T., Katz, N., & Gobbi, G. (2010) Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission. Neurobiol. Dis., 37(3), 641-655.
      Bambico, F. R., Hattan, P. R., Garant, J.-P., & Gobbi, G. (2012) Effect of delta-9-tetrahydrocannabinol on behavioral despair and on pre-and postsynaptic serotonergic transmission. Prog. Neuropsychopharmacol. Biol. Psychiatry, 38(1), 88-96.
      Barkus, E., Morrison, P. D., Vuletic, D., Dickson, J. C., Ell, P. J., Pilowsky, L. S., & Kapur, S. (2011) Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study J. Psychopharmacol., 25(11), 1462-1468.
      Bar-Peled, O., Ben-Hur, H., Biegon, A., Groner, Y., Dewhurst, S., Furuta, A., & Rothstein, J. D. (1997) Distribution of glutamate transporter subtypes during human brain development. J. Neurochem., 69(6), 2571-2580.
      Battistella, G., Fornari, E., Annoni, J. M., Chtioui, H., Dao, K., Fabritius, M., … Giroud, C. (2014) Long-term effects of cannabis on brain structure. Neuropsychopharmacology, 39(9), 2041.
      Baumann, M. H., & Elmore, J. S. (2018) Repeated exposure to the “spice” cannabinoid JWH-018 induces tolerance and enhances responsiveness to 5-HT1A receptor stimulation in male rats. Front. Psychiatry., 9, 55.
      Berger, M., Gray, J. A., & Roth, B. L. (2009) The expanded biology of serotonin. Annu. Rev. Med., 60, 355-366.
      Berridge, K. C., & Robinson, T. E. (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev., 28(3), 309-369.
      Bhattacharyya, S., Crippa, J. A., Allen, P., Martin-Santos, R., Borgwardt, S., Fusar-Poli, P., & Seal, M. L. (2012) Induction of psychosis byδ9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing. Arch. Gen. Psychiat., 69(1), 27-36.
      Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29(11), 1943.
      Biscaia, M., Fernández, B., Higuera-Matas, A., Miguéns, M., Viveros, M.-P., García-Lecumberri, C., & Ambrosio, E. (2008) Sex-dependent effects of periadolescent exposure to the cannabinoid agonist CP-55,940 on morphine self-administration behaviour and the endogenous opioid system. Neuropharmacology, 54(5), 863-873.
      Bloomfield, M. A. P., Morgan, C. J. A., Egerton, A., Kapur, S., Curran, H. V., & Howes, O. D. (2014a) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiat., 75(6), 470-478.
      Bloomfield, M. A. P., Morgan, C. J. A., Kapur, S., Curran, H. V., & Howes, O. D. (2014b) The link between dopamine function and apathy in cannabis users: an [18 F]-DOPA PET imaging study. Psychopharmacology, 231(11), 2251-2259.
      Borgelt, L. M., Franson, K. L., Nussbaum, A. M., & Wang, G. S. (2013) The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy, 33(2), 195-209.
      Bosker, W. M., Karschner, E. L., Lee, D., Goodwin, R. S., Hirvonen, J., Innis, R. B., & Ramaekers, J. G. (2013) Psychomotor function in chronic daily cannabis smokers during sustained abstinence. PLoS ONE, 8(1), e53127.
      Bossong, M. G., Van Berckel, B. N., Boellaard, R., Zuurman, L., Schuit, R. C., Windhorst, A. D., & Kahn, R. S. (2009) Δ9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology, 34(3), 759.
      Bossong, M. G., Jansma, J. M., van Hell, H. H., Jager, G., Kahn, R. S., & Ramsey, N. F. (2013) Default mode network in the effects of Δ9-Tetrahydrocannabinol (THC) on human executive function. PLoS ONE, 8(7), e70074.
      Bossong, M. G., Mehta, M. A., van Berckel, B. N. M., Howes, O. D., Kahn, R. S., & Stokes, P. R. A. (2015) Further human evidence for striatal dopamine release induced by administration of∆ 9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology, 232(15), 2723-2729.
      Brown, T. M., Brotchie, J. M., & Fitzjohn, S. M. (2003) Cannabinoids decrease corticostriatal synaptic transmission via an effect on glutamate uptake. J. Neurosci., 23(35), 11073-11077.
      Bubar, M. J., & Cunningham, K. A. (2006) Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr. Top. Med. Chem., 6(18), 1971-1985.
      Burnet, P. W. J., Eastwood, S. L., Lacey, K., & Harrison, P. J. (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res., 676(1), 157-168.
      Caballero, A., & Tseng, K. Y. (2012) Association of cannabis use during adolescence, prefrontal CB1 receptor signaling, and schizophrenia. Front Pharmacol., 3, 101.
      Cadogan, A. K., Alexander, S. P., Boyd, E. A., & Kendall, D. A. (1997) Influence of cannabinoids on electrically evoked dopamine release and cyclic AMP generation in the rat striatum. J. Neurochem., 69(3), 1131-1137.
      Calignano, A., La Rana, G., Giuffrida, A., & Piomelli, D. (1998) Control of pain initiation by endogenous cannabinoids. Nature, 394, 277-281.
      Candelaria-Cook, F. T., & Hamilton, D. A. (2014) Chronic cannabinoid agonist (WIN 55,212-2) exposure alters hippocampal dentate gyrus spine density in adult rats. Brain Res., 1542, 104-110.
      Carta, G., Nava, F., & Gessa, G. L. (1998) Inhibition of hippocampal acetylcholine release after acute and repeated Δ9-tetrahydrocannabinol in rats. Brain Res., 809(1), 1-4.
      Carvalho, A. F., Mackie, K., & Van Bockstaele, E. J. (2010) Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur. J. Neurosci., 31(2), 286-301.
      Carvalho, A. F., & Van Bockstaele, E. J. (2012) Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 38(1), 59-67.
      Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., & Poulton, R. (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol. Psychiat., 57(10), 1117-1127.
      Cass, D. K., Flores-Barrera, E., Thomases, D. R., Vital, W. F., Caballero, A., & Tseng, K. Y. (2014) CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol. Psychiatry, 19(5), 536.
      Castaneto, M. S., Gorelick, D. A., Desrosiers, N. A., Hartman, R. L., Pirard, S., & Huestis, M. A. (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depen., 144, 12-41.
      Castellanos, D., & Thornton, G. (2012) Synthetic cannabinoid use: recognition and management. J. Psychiatric Pract., 18(2), 86-93.
      Chang, L., Cloak, C., Yakupov, R., & Ernst, T. (2006) Combined and independent effects of chronic marijuana use and HIV on brain metabolites. J. Neuroimmune Pharm., 1(1), 65-76.
      Cheer, J. F., Kendall, D. A., Mason, R., & Marsden, C. A. (2003) Differential cannabinoid-induced electrophysiological effects in rat ventral tegmentum. Neuropharmacology, 44(5), 633-641.
      Chen, J., Paredes, W., Lowinson, J. H., & Gardner, E. L. (1991) Strain-specific facilitation of dopamine efflux by Δ9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci. Lett., 129(1), 136-140.
      Chen, R., Zhang, J., Fan, N., Teng, Z., Wu, Y., Yang, H., & Chen, C. (2013) Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell, 155(5), 1154-1165.
      Chiu, C. Q., Puente, N., Grandes, P., & Castillo, P. E. (2010) Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J. Neurosci., 30(21), 7236-7248.
      Cohen, K., Kapitány-Fövény, M., Mama, Y., Arieli, M., Rosca, P., Demetrovics, Z., & Weinstein, A. (2017) The effects of synthetic cannabinoids on executive function. Psychopharmacology, 234(7), 1121-1134.
      Cohen, K. & Weinstein, A.M. (2018a) Synthetic and Non-synthetic Cannabinoid Drugs and Their Adverse Effects-A Review from Public Health Prospective. Front. Public Health, 6, 162.
      Cohen, K. & Weinstein, A. M. (2018b) The effects of cannabinoids on executive functions: evidence from cannabis and synthetic cannabinoids\xF6a systematic review, Brain Sci., 8(3), 40.
      Colizzi, M., McGuire, P., Pertwee, R. G., & Bhattacharyya, S. (2016) Effect of cannabis on glutamate signalling in the brain: a systematic review of human and animal evidence. Neurosci. Biobehav. R., 64, 359-381.
      Corchero, J., Avila, M. A., Fuentes, J. A., & Manzanares, J. (1997) Δ-9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sci., 61(4), PL39-PL43.
      Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J. P., & Mohler, H. (1999) Decreased GABA A-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci., 2(9), 833.
      Darmani, N. A. (2001) Cannabinoids of diverse structure inhibit two DOI-induced 5-HT2A receptor-mediated behaviors in mice. Pharmacol. Biochem. Be., 68(2), 311-317.
      Darmani, N. A., Janoyan, J. J., Kumar, N., & Crim, J. L. (2003) Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacol. Biochem. Be., 75(4), 777-787.
      Dean, B., Sundram, S., Bradbury, R., Scarr, E., & Copolov, D. (2001) Studies on [3H] CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience, 103(1), 9-15.
      Dean, B., Bradbury, R., & Copolov, D. L. (2003) Cannabis-sensitive dopaminergic markers in postmortem central nervous system: changes in schizophrenia. Biol. Psychiat., 53(7), 585-592.
      Degenhardt, L., Tennant, C., Gilmour, S., Schofield, D., Nash, L., Hall, W., & McKAY, D. I. A. N. A. (2007) The temporal dynamics of relationships between cannabis, psychosis and depression among young adults with psychotic disorders: findings from a 10-month prospective study. Psychol. Med., 37(7), 927-934.
      Derkinderen, P., Valjent, E., Toutant, M., Corvol, J.-C., Enslen, H., Ledent, C., & Girault, J.-A. (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci., 23(6), 2371-2382.
      Di Chiara, G. (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res., 137(1-2), 75-114.
      Di Forti, M., Marconi, A., Carra, E., Fraietta, S., Trotta, A., Bonomo, M., & Stilo, S. A. (2015) Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: a case-control study. Lancet Psychiat., 2(3), 233-238.
      Diana, M., Melis, M., & Gessa, G. L. (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur. J. Neurosci., 10(9), 2825-2830.
      D'Souza, D. C., Ranganathan, M., Braley, G., Gueorguieva, R., Zimolo, Z., Cooper, T., & Krystal, J. (2008) Blunted psychotomimetic and amnestic effects of Δ-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology, 33(10), 2505.
      D'Souza, D. C., Radhakrishnan, R., Sherif, M., Cortes-Briones, J., Cahill, J., Gupta, S., Skosnik, P. D., & Ranganathan, M. (2016) Cannabinoids and psychosis. Curr. Pharm. Des., 22(42), 6380-6391.
      Duncan, M., Mouihate, A., Mackie, K., Keenan, C. M., Buckley, N. E., Davison, J. S., & Sharkey, K. A. (2008) Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am. J. Physiol., 295(1), G78-G87.
      Duncan, N. W., Wiebking, C., Tiret, B., Marjańska, M., Hayes, D. J., Lyttleton, O., & Northoff, G. (2013) Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS ONE, 8(4), e60312.
      Egashira, N., Mishima, K., Iwasaki, K., & Fujiwara, M. (2002a) Intracerebral microinjections of Δ9-tetrahydrocannabinol: search for the impairment of spatial memory in the eight-arm radial maze in rats. Brain Res., 952(2), 239-245.
      Egashira, N., Mishima, K., Katsurabayashi, S., Yoshitake, T., Matsumoto, Y., Ishida, J., & Fujiwara, M. (2002b) Involvement of 5-hydroxytryptamine neuronal system in Δ9-tetrahydrocannabinol-induced impairment of spatial memory. Eur. J. Pharmacol., 445(3), 221-229.
      Egashira, N., Matsuda, T., Koushi, E., Higashihara, F., Mishima, K., Chidori, S., … Fujiwara, M. (2008) Δ9-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: Involvement of cannabinoid CB1 receptor and serotonergic system. Eur. J. Pharmacol., 589(1-3), 117-121.
      Ellgren, M., Spano, S. M., & Hurd, Y. L. (2007) Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology, 32(3), 607.
      Everitt, B. J., & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci., 8(11), 1481-1489.
      Evins, A. E., Green, A. I., Kane, J. M., & Murray, R. M. (2012) The effect of marijuana use on the risk for schizophrenia. J. Clin. Psychiat., 73(11), 1463-1468.
      Ewing, S. W. F., Mead, H. K., Yezhuvath, U., DeWitt, S., Hutchison, K. E., & Filbey, F. M. (2012) A preliminary examination of how serotonergic polymorphisms influence brain response following an adolescent cannabis intervention. Psychiat Res., 204(2), 112-116.
      Fan, N., Yang, H., Zhang, J., & Chen, C. (2010) Reduced expression of glutamate receptors and phosphorylation of CREB are responsible for in vivoΔ9-THC exposure-impaired hippocampal synaptic plasticity. J. Neurochem., 112(3), 691-702.
      Fanarioti, E., Mavrikaki, M., Panagis, G., Mitsacos, A., Nomikos, G. G., & Giompres, P. (2015) Behavioral and neurochemical changes in mesostriatal dopaminergic regions of the rat after chronic administration of the cannabinoid receptor agonist WIN55, 212-2. Int. J. Neuropsychopharm., 18(6), 1-17.
      Fantegrossi, W. E., Wilson, C. D., & Berquist, M. D. (2018) Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metab. Rev., 50, 65-73.
      Fattore, L. (2016) Synthetic cannabinoids-further evidence supporting the relationship between cannabinoids and psychosis. Biol. Psychiat., 79(7), 539-548.
      Fattore, L., Cossu, G., Spano, M. S., Deiana, S., Fadda, P., Scherma, M., & Fratta, W. (2004) Cannabinoids and reward: interactions with the opioid system. Crit. Rev. Neurobiol., 16, 147-158.
      Ferreira, S. G., Teixeira, F. M., Garção, P., Agostinho, P., Ledent, C., Cortes, L., & Köfalvi, A. (2012) Presynaptic CB1 cannabinoid receptors control frontocortical serotonin and glutamate release-species differences. Neurochem. Int., 61(2), 219-226.
      Fibiger, H. C. (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev., 4(3), 327-388.
      File, S. E., & Gonzalez, L. E. (1996) Anxiolytic effects in the plus-maze of 5-HT1A-receptor ligands in dorsal raphe and ventral hippocampus. Pharmacol. Biochem. Be., 54(1), 123-128.
      Forrester, M. B., Kleinschmidt, K., Schwarz, E., & Young, A. (2012) Synthetic cannabinoid and marijuana exposures reported to poison centers. Hum. Exp. Toxicol., 31(10), 1006-1011.
      Fox, A., Kesingland, A., Gentry, C., McNair, K., Patel, S., Urban, L., & James, I. (2001) The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain, 92(1-2), 91-100.
      Franklin, J. M., & Carrasco, G. A. (2012) Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT2A and dopamine D2 receptors in rat prefrontal cortex. J. Psychopharmacol., 26(10), 1333-1347.
      Franklin, J. M., Mathew, M., & Carrasco, G. A. (2013) Cannabinoid-induced upregulation of serotonin 2A receptors in the hypothalamic paraventricular nucleus and anxiety-like behaviors in rats. Neurosci. Lett., 548, 165-169.
      French, E. D., Dillon, K., & Wu, X. (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. NeuroReport, 8(3), 649-652.
      Friedman, J. I., Adler, D. N., & Davis, K. L. (1999) The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease. Biol. Psychiat., 46(9), 1243-1252.
      Fusar-Poli, P., Crippa, J. A., Bhattacharyya, S., Borgwardt, S. J., Allen, P., Martin-Santos, R., & Zuardi, A. W. (2009) Distinct effects of Δ9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch. Gen. Psychiat., 66(1), 95-105.
      Galanopoulos, A., Polissidis, A., Georgiadou, G., Papadopoulou-Daifoti, Z., Nomikos, G. G., Pitsikas, N., & Antoniou, K. (2014) WIN55, 212-2 impairs non-associative recognition and spatial memory in rats via CB1 receptor stimulation. Pharmacol. Biochem. Be., 124, 58-66.
      Galindo, L., Moreno, E., López-Armenta, F., Guinart, D., Cuenca-Royo, A., Izquierdo-Serra, M., & Fernández-Fernández, J. M. (2018) Cannabis users show enhanced expression of CB 1-5HT 2A receptor heteromers in olfactory neuroepithelium cells. Mol. Neurobiol., 55, 6347-6361.
      Gardner, E. L., & Lowinson, J. H. (1991) Marijuana's interaction with brain reward systems: update 1991. Pharmacol. Biochem. Be., 40(3), 571-580.
      Gessa, G. L., Casu, M. A., Carta, G., & Mascia, M. S. (1998a) Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur. J. Pharmacol., 355(2-3), 119-124.
      Gessa, G., Melis, M., Muntoni, A., & Diana, M. (1998b) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur. J. Pharmacol., 341(1), 39-44.
      van de Giessen, E., Weinstein, J. J., Cassidy, C. M., Haney, M., Dong, Z., Ghazzaoui, R., & Vadhan, N. P. (2017) Deficits in striatal dopamine release in cannabis dependence. Mol. Psychiatry, 22(1), 68.
      Gifford, A. N., & Ashby, C. R. (1996) Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55212-2, and is potentiated by the cannabinoid antagonist, SR 141716A. J. Pharmacol. Exp. Ther., 277(3), 1431-1436.
      Gifford, A. N., Bruneus, M., Gatley, S. J., & Volkow, N. D. (2000) Cannabinoid receptor-mediated inhibition of acetylcholine release from hippocampal and cortical synaptosomes. Br. J. Pharmacol., 131(3), 645-650.
      Ginovart, N., Tournier, B. B., Moulin-Sallanon, M., Steimer, T., Ibanez, V., & Millet, P. (2012) Chronic Δ 9-tetrahydrocannabinol exposure induces a sensitization of dopamine D 2/3 receptors in the mesoaccumbens and nigrostriatal systems. Neuropsychopharmacology, 37(11), 2355.
      Glaser, T. (1987) 5-HT1A receptor-related anxiolytics. Trends Pharmacol. Sci., 8(11), 432-437.
      Gobbi, G., Bambico, F. R., Mangieri, R., Bortolato, M., Campolongo, P., Solinas, M., & Duranti, A. (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc. Natl Acad. Sci. USA, 102(51), 18620-18625.
      Goonawardena, A. V., Robinson, L., Hampson, R. E., & Riedel, G. (2010) Cannabinoid and cholinergic systems interact during performance of a short-term memory task in the rat. Learn. Memory, 17(10), 502-511.
      Granon, S., Poucet, B., Thinus-Blanc, C., Changeux, J. P., & Vidal, C. (1995) Nicotinic and muscarinic receptors in the rat prefrontal cortex: differential roles in working memory, response selection and effortful processing. Psychopharmacology, 119(2), 139-144.
      Grinspoon, L., & Bakalar, J. B. (1998) The use of cannabis as a mood stabilizer in bipolar disorder: anecdotal evidence and the need for clinical research. J. Psychoactive Drugs, 30(2), 171-177.
      Grotenhermen, F., Leson, G., Berghaus, G., Drummer, O. H., Krüger, H. P., Longo, M., & Tunbridge, R. (2007) Developing limits for driving under cannabis. Addiction, 102(12), 1910-1917.
      Gurevich, E. V., Bordelon, Y., Shapiro, R. M., Arnold, S. E., Gur, R. E., & Joyce, J. N. (1997) Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia: a postmortem study. Arch. Gen. Psychiat., 54(3), 225-232.
      Hall, W., & Degenhardt, L. (2009) Adverse health effects of non-medical cannabis use. Lancet, 374(9698), 1383-1391.
      Hall, W., & Weier, M. (2015) Assessing the public health impacts of legalizing recreational cannabis use in the USA. Clin. Pharmacol. Ther., 97(6), 607-615.
      Hampson, R. E., Miller, F., Palchik, G., & Deadwyler, S. A. (2011) Cannabinoid receptor activation modifies NMDA receptor mediated release of intracellular calcium: implications for endocannabinoid control of hippocampal neural plasticity. Neuropharmacology, 60(6), 944-952.
      Han, J., Kesner, P., Metna-Laurent, M., Duan, T., Xu, L., Georges, F., & Grandes, P. (2012) Acute cannabinoids impair working memory through astroglial CB 1 receptor modulation of hippocampal LTD. Cell, 148(5), 1039-1050.
      Hartman, R. L., & Huestis, M. A. (2012) Cannabis effects on driving skills. Clin. Chem., 59(3), 1-15.
      Hashimoto, T., Volk, D. W., Eggan, S. M., Mirnics, K., Pierri, J. N., Sun, Z., … Lewis, D. A. (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci., 23(15), 6315-6326.
      Hashimotodani, Y., Ohno-Shosaku, T., Watanabe, M., & Kano, M. (2007) Roles of phospholipase Cβ and NMDA receptor in activity-dependent endocannabinoid release. J. Physiol., 584(2), 373-380.
      Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., & Rice, K. C. (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci., 11(2), 563-583.
      Hides, L., Dawe, S., Kavanagh, D. J., & Young, R. M. (2006) Psychotic symptom and cannabis relapse in recent-onset psychosis: prospective study. Brit. J. Psychiat., 189(2), 137-143.
      Hill, M. N., Sun, J. C., Tse, M. T. L., & Gorzalka, B. B. (2006) Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int. J. Neuropsychopharm., 9(3), 277-286.
      Hoffman, A. F., Oz, M., Caulder, T., & Lupica, C. R. (2003) Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci., 23(12), 4815-4820.
      Hohmann, A. G., Briley, E. M., & Herkenham, M. (1999) Pre-and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res., 822(1-2), 17-25.
      Houser, S. J., Eads, M., Embrey, J. P., & Welch, S. P. (2000) Dynorphin B and spinal analgesia: induction of antinociception by the cannabinoids CP55, 940, Δ9-THC and anandamide1. Brain Res., 857(1-2), 337-342.
      Howes, O. D., Montgomery, A. J., Asselin, M. C., Murray, R. M., Valli, I., Tabraham, P., … McGuire, P. K. (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiat., 66(1), 13-20.
      Howlett, A. C., Breivogel, C. S., Childers, S. R., Deadwyler, S. A., Hampson, R. E., & Porrino, L. J. (2004) Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology, 47, 345-358.
      Hoyer, D., Hannon, J. P., & Martin, G. R. (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Be., 71(4), 533-554.
      Ibrahim, M. M., Rude, M. L., Stagg, N. J., Mata, H. P., Lai, J., Vanderah, T. W., … Malan, T. P. Jr (2006) CB2 cannabinoid receptor mediation of antinociception. Pain, 122(1-2), 36-42.
      Irie, T., Kikura-Hanajiri, R., Usami, M., Uchiyama, N., Goda, Y., & Sekino, Y. (2015) MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors. Neuropharmacology, 95, 479-491.
      Iseger, T. A., & Bossong, M. G. (2015) A systematic review of the antipsychotic properties of cannabidiol in humans. Schizophr. Res., 162(1), 153-161.
      Iversen, L. (2005) Long-term effects of exposure to cannabis. Curr. Opin. Pharmacol., 5(1), 69-72.
      Jaggar, S. I., Hasnie, F. S., Sellaturay, S., & Rice, A. S. (1998) The antihyperalgesic action of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain, 76, 189-199.
      Jardinaud, F., Roques, B. P., & Noble, F. (2006) Tolerance to the reinforcing effects of morphine in delta9-tetrahydrocannabinol treated mice. Behav. Brain Res., 173(2), 255-261.
      Jentsch, J. D., Andrusiak, E., Tran, A., Bowers, M. B. Jr, & Roth, R. H. (1997) Δ9-Tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology, 16(6), 426-432.
      Jhaveri, M. D., Richardson, D., Kendall, D. A., Barrett, D. A., & Chapman, V. (2006) Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J. Neurosci., 26(51), 13318-13327.
      Johnson, M. R., Melvin, L. S., Althuis, T. H., Bindra, J. S., Harbert, C. A., Milne, G. M., & Weissman, A. (1981) Selective and potent analgetics derived from cannabinoids. J. Clin. Pharmacol., 21(S1), 271S-282S.
      Jones, K. A., Srivastava, D. P., Allen, J. A., Strachan, R. T., Roth, B. L., & Penzes, P. (2009) Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl Acad. Sci., 106(46), 19575-19580.
      Kathmann, M., Bauer, U., Schlicker, E., & Göthert, P. (1999) Cannabinoid CB1 receptor-mediated inhibition of NMDA-and kainate-stimulated noradrenaline and dopamine release in the brain. Naunyn-Schmiedeberg's Arch, 359(6), 466-470.
      Katona, I., Sperlágh, B., Sık, A., Käfalvi, A., Vizi, E. S., Mackie, K., & Freund, T. F. (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci., 19(11), 4544-4558.
      Katona, I., Rancz, E. A., Acsády, L., Ledent, C., Mackie, K., Hájos, N., & Freund, T. F. (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J. Neurosci., 21(23), 9506-9518.
      Kawamura, Y., Fukaya, M., Maejima, T., Yoshida, T., Miura, E., Watanabe, M., & Kano, M. (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci., 26(11), 2991-3001.
      Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M., & Laruelle, M. (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiat., 67(3), 231-239.
      Kim, H. S., & Monte, A. A. (2016) Colorado cannabis legalization and its effect on emergency care. Ann. Emerg. Med., 68(1), 71-75.
      Kim, S. H., Baik, S.-H., Park, C. S., Kim, S. J., Choi, S. W., & Kim, S. E. (2011) Reduced striatal dopamine D2 receptors in people with Internet addiction. NeuroReport, 22(8), 407-411.
      Klimek, V., Stockmeier, C., Overholser, J., Meltzer, H. Y., Kalka, S., Dilley, G., & Ordway, G. A. (1997) Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J. Neurosci., 17(21), 8451-8458.
      Kuepper, R., Ceccarini, J., Lataster, J., van Os, J., van Kroonenburgh, M., van Gerven, J. M. A., … Henquet, C. (2013) Delta-9-tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study. PLoS ONE, 8(7), e70378.
      Langer, N., Lindigkeit, R., Schiebel, H. M., Ernst, L., & Beuerle, T. (2014) Identification and quantification of synthetic cannabinoids in ‘spice-like'herbal mixtures: a snapshot of the German situation in the autumn of 2012. Drug Test Anal., 6(1-2), 59-71.
      Laruelle, M., Abi-Dargham, A., Van Dyck, C. H., Gil, R., D'Souza, C. D., Erdos, J., & Baldwin, R. M. (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl Acad. Sci., 93(17), 9235-9240.
      Lenkey, N., Kirizs, T., Holderith, N., Máté, Z., Szabó, G., Vizi, E. S., … Nusser, Z. (2015) Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB 1 content of axon terminals. Nat. Commun., 6, 6557.
      Leroy, C., Karila, L., Martinot, J. L., Lukasiewicz, M., Duchesnay, E., Comtat, C., & Reynaud, M. (2012) Striatal and extrastriatal dopamine transporter in cannabis and tobacco addiction: a high-resolution PET study. Addict. Biol., 17(6), 981-990.
      Lewis, D. A., Pierri, J. N., Volk, D. W., Melchitzky, D. S., & Woo, T. U. W. (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol. Psychiat., 46(5), 616-626.
      Li, Q., Yan, H., Wilson, W. A., & Swartzwelder, H. S. (2010) Modulation of NMDA and AMPA-mediated synaptic transmission by CB1 receptors in frontal cortical pyramidal cells. Brain Res., 1342, 127-137.
      Lichtman, A. H., Cook, S. A., & Martin, B. R. (1996) Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. J. Pharmacol. Exp. Ther., 276(2), 585-593.
      Lile, J. A., Kelly, T. H., & Hays, L. R. (2012a) Separate and combined effects of the GABA reuptake inhibitor tiagabine and Δ9-THC in humans discriminating Δ9-THC. Drug Alcohol Depen., 122(1-2), 61-69.
      Lile, J. A., Kelly, T. H., & Hays, L. R. (2012b) Separate and combined effects of the GABAB agonist baclofen and Δ9-THC in humans discriminating Δ9-THC. Drug Alcohol Depen., 126(1-2), 216-223.
      Liu, Q., Bhat, M., Bowen, W. D., & Cheng, J. (2009) Signaling pathways from cannabinoid receptor-1 activation to inhibition of N-methyl-D-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J. Pharmacol. Exp. Ther., 331(3), 1062-1070.
      Liu, Z., Han, J., Jia, L., Maillet, J.-C., Bai, G., Xu, L., & Monette, R. (2010) Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning. PLoS ONE, 5(12), e15634.
      Lombard, C., Nagarkatti, M., & Nagarkatti, P. (2007) CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin. Immunol., 122(3), 259-270.
      Lorenzetti, V., Solowij, N., Fornito, A., Lubman, D. I., & Yucel, M. (2014) The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature. Curr. Pharm. Des., 20(13), 2138-2167.
      Lorenzetti, V., Solowij, N., & Yücel, M. (2015) The role of cannabinoids on neuroanatomical alterations in cannabis users. Biol. Psychiat., 79(7), 17-31.
      Luo, M., Li, Y., & Zhong, W. (2016) Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol. Learn. Mem., 135, 40-49.
      Maeng, S., & Zarate, C. A. (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr. Psychiat. Rep., 9(6), 467-474.
      Mailleux, P., & Vanderhaeghen, J.-J. (1992) Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci. Lett., 148, 173-176.
      Malone, D. T., & Taylor, D. A. (1999a) Modulation by fluoxetine of striatal dopamine release following Δ9-tetrahydrocannabinol: a microdialysis study in conscious rats. Br. J. Pharmacol., 128(1), 21-26.
      Maneuf, Y. P., Nash, J. E., Crossman, A. R., & Brotchie, J. M. (1996) Activation of the cannabinoid receptor by Δ9-tetrahydrocannabinol reduces γ-aminobutyric acid uptake in the globus pallidus. Eur. J. Pharmacol., 308(2), 161-164.
      Mansour, A., Fox, C. A., Akil, H., & Watson, S. J. (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci., 18(1), 22-29.
      Manzanedo, C., Aguilar, M. A., Rodríguez-Arias, M., Navarro, M., & Miñarro, J. (2004) Cannabinoid agonist-induced sensitisation to morphine place preference in mice. NeuroReport, 15(8), 1373-1377.
      Manzoni, O. J., & Bockaert, J. (2001) Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur. J. Pharmacol., 412(2), 3-5.
      Martin-Santos, R., Fagundo, A. B., Crippa, J. A., Atakan, Z., Bhattacharyya, S., Allen, P., & McGuire, P. (2010) Neuroimaging in cannabis use: a systematic review of the literature. Psychol. Med., 40(3), 383-398.
      Martin-Santos, R., Crippa, J., Batalla, A., Bhattacharyya, S., Atakan, Z., Borgwardt, S., … Farre, M. (2012) Acute effects of a single, oral dose of d9-tetrahydrocannabinol (THC) and cannabidiol (CBD) administration in healthy volunteers. Curr. Pharm. Des., 18(32), 4966-4979.
      Mason, D. J. Jr, Lowe, J., & Welch, S. P. (1999) Cannabinoid modulation of dynorphin A: correlation to cannabinoid-induced antinociception. Eur. J. Pharmacol., 378(3), 237-248.
      Mato, S., Robbe, D., Puente, N., Grandes, P., & Manzoni, O. J. (2005) Presynaptic homeostatic plasticity rescues long-term depression after chronic Δ9-tetrahydrocannabinol exposure. J. Neurosci., 25(50), 11619-11627.
      McLaughlin, R. J., Hill, M. N., & Gorzalka, B. B. (2009) Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. Eur. J. Pharmacol., 624(1-3), 71-76.
      Mechoulam, R., Peters, M., Murillo-Rodriguez, E., & Hanus, L. O. (2007) Cannabidiol-recent advances. Chem. Biodivers., 4(8), 1678-1692.
      Melis, M., Pistis, M., Perra, S., Muntoni, A. L., Pillolla, G., & Gessa, G. L. (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci., 24(1), 53-62.
      Meltzer, H. Y., Li, Z., Kaneda, Y., & Ichikawa, J. (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 27(7), 1159-1172.
      Mendiguren, A., & Pineda, J. (2006) Systemic effect of cannabinoids on the spontaneous firing rate of locus coeruleus neurons in rats. Eur. J. Pharmacol., 534(1-3), 83-88.
      Mendiguren, A., Aostri, E., & Pineda, J. (2018) Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci., 192, 115-127.
      Merroun, I., Errami, M., Hoddah, H., Urbano, G., Porres, J. M., Aranda, P., … López-Jurado, M. (2009) Influence of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist (WIN 55,212-2) and inverse agonist (AM 251) on the regulation of food intake and hypothalamic serotonin levels. Brit. J. Nutr., 101(10), 1569-1578.
      Mishima, K., Egashira, N., Matsumoto, Y., Iwasaki, K., & Fujiwara, M. (2002) Involvement of reduced acetylcholine release in Δ9-tetrahydrocannabinol-induced impairment of spatial memory in the 8-arm radial maze. Life Sci., 72(4-5), 397-407.
      Misner, D. L., & Sullivan, J. M. (1999) Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J. Neurosci., 19(16), 6795-6805.
      Mizrahi, R., Suridjan, I., Kenk, M., George, T. P., Wilson, A., Houle, S., & Rusjan, P. (2013) Dopamine response to psychosocial stress in chronic cannabis users: a PET study with [11 C]-(+)-PHNO. Neuropsychopharmacology, 38(4), 673.
      Mizrahi, R., Kenk, M., Suridjan, I., Boileau, I., George, T. P., McKenzie, K., & Rusjan, P. (2014) Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology, 39(6), 1479.
      Möhler, H. (2006) GABA A receptor diversity and pharmacology. Cell Tissue Res., 326(2), 505-516.
      Moranta, D., Esteban, S., & García-Sevilla, J. A. (2004) Differential effects of acute cannabinoid drug treatment, mediated by CB 1 receptors, on the in vivo activity of tyrosine and tryptophan hydroxylase in the rat brain. N-S Arch. Pharmacol., 369(5), 516-524.
      Moranta, D., Esteban, S., & García-Sevilla, J. A. (2009) Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212-2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. N-S Arch. Pharmacol., 379(1), 61-72.
      Morera-Herreras, T., Ruiz-Ortega, J. A., Gomez-Urquijo, S., & Ugedo, L. (2008) Involvement of subthalamic nucleus in the stimulatory effect of Δ9-tetrahydrocannabinol on dopaminergic neurons. Neuroscience, 151(3), 817-823.
      Morgan, N. H., Stanford, I. M., & Woodhall, G. L. (2008) Modulation of network oscillatory activity and GABAergic synaptic transmission by CB1 cannabinoid receptors in the rat medial entorhinal cortex. Neural. Plast., 2008, 1-12.
      Morrish, A. C., Hill, M. N., Riebe, C. J., & Gorzalka, B. B. (2009) Protracted cannabinoid administration elicits antidepressant behavioral responses in rats: role of gender and noradrenergic transmission. Physiol. Behav., 98(1-2), 118-124.
      Muetzel, R. L., Marjańska, M., Collins, P. F., Becker, M. P., Valabrègue, R., Auerbach, E. J., & Luciana, M. (2013) In vivo 1H magnetic resonance spectroscopy in young-adult daily marijuana users. NeuroImage, 2, 581-589.
      Muir, J. L., Everitt, B. J., & Robbins, T. W. (1994) AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J. Neurosci., 14(4), 2313-2326.
      Muntoni, A. L., Pillolla, G., Melis, M., Perra, S., Gessa, G. L., & Pistis, M. (2006) Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur. J. Neurosci., 23(9), 2385-2394.
      Murray, R. M., Quigley, H., Quattrone, D., Englund, A., & Di Forti, M. (2016) Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis. World Psychiatry, 15(3), 195-204.
      Nacmias, B., Tedde, A., Forleo, P., Piacentin, S., Guarnieri, B. M., Bartoli, A., … Marcon, G. (2001) Association between 5-HT2A receptor polymorphism and psychotic symptoms in Alzheimer's disease. Biol. Psychiat., 50(6), 472-475.
      Nakazi, M., Bauer, U., Nickel, T., Kathmann, M., & Schlicker, E. (2000) Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB 1 receptors. N-S Arch. Pharmacol., 361(1), 19-24.
      Nasehi, M., Shahbazzadeh, S., Ebrahimi-Ghiri, M., & Zarrindast, M. R. (2018) Bidirectional influence of amygdala β1-adrenoceptors blockade on cannabinoid signaling in contextual and auditory fear memory. J. Psychopharmacol., 32(8), 932-942.
      Nava, F., Carta, G., Colombo, G., & Gessa, G. L. (2001) Effects of chronic Δ9-tetrahydrocannabinol treatment on hippocampal extracellular acetylcholine concentration and alternation performance in the T-maze. Neuropharmacology, 41(3), 392-399.
      Navarrete, F., Rodríguez-Arias, M., Martín-García, E., Navarro, D., García-Gutiérrez, M. S., Aguilar, M. A., & Maldonado, R. (2013) Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology, 38(12), 2515.
      Norwood, C. S., Cornish, J. L., Mallet, P. E., & McGregor, I. S. (2003) Pre-exposure to the cannabinoid receptor agonist CP 55,940 enhances morphine behavioral sensitization and alters morphine self-administration in Lewis rats. Eur. J. Pharmacol., 465(1-2), 105-114.
      Nutt, D. J., & Malizia, A. L. (2001) New insights into the role of the GABA A-benzodiazepine receptor in psychiatric disorder. Brit. J. Psychiat., 179(5), 390-396.
      Oropeza, V. C., Page, M. E., & Van Bockstaele, E. J. (2005) Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex. Brain Res., 1046(1-2), 45-54.
      Otten, R., Huizink, A. C., Monshouwer, K., Creemers, H. E., & Onrust, S. (2017) Cannabis use and symptoms of anxiety in adolescence and the moderating effect of the serotonin transporter gene. Addict. Biol., 22(4), 1081-1089.
      Pacheco, D. D. F., Klein, A., Perez, A. D. C., Pacheco, C. D. F., De Francischi, J. N., & Duarte, I. D. G. (2008) The μ-opioid receptor agonist morphine, but not agonists at δ-or κ-opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors. Brit. J. Pharmacol., 154(5), 1143-1149.
      Pacheco, D. D., Klein, A., Perez, A. C., da Fonseca Pacheco, C. M., De Francischi, J. N., Reis, G. M. L., & Duarte, I. D. G. (2009) Central antinociception induced by μ-opioid receptor agonist morphine, but not δ-or κ-, is mediated by cannabinoid CB1 receptor. Brit. J. Pharmacol., 158(1), 225-231.
      Pacher, P., & Mechoulam, R. (2011) Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res., 50(2), 193-211.
      Page, M. E., Oropeza, V. C., & Van Bockstaele, E. J. (2008) Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex. Neurosci. Lett., 431(1), 1-5.
      Patel, S., & Hillard, C. J. (2003) Cannabinoid-induced Fos expression within A10 dopaminergic neurons. Brain Res., 963(1-2), 15-25.
      Perdikaris, P., Tsarouchi, M., Fanarioti, E., Natsaridis, E., Mitsacos, A., & Giompres, P. (2018) Long lasting effects of chronic WIN55, 212-2 treatment on mesostriatal dopaminergic and cannabinoid systems in the rat brain. Neuropharmacology, 129, 1-15.
      Pertwee, R. G. (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 74(2), 129-180.
      Pertwee, R. G. (2001) Cannabinoid receptors and pain. Prog. Neurobiol., 63(5), 569-611.
      Pertwee, R. G. (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Brit. J. Pharmacol., 153(2), 199-215.
      Petty, F., Kramer, G. L., Fulton, M., Moeller, F. G., & Rush, A. J. (1993) Low plasma GABA is a trait-like marker for bipolar illness. Neuropsychopharmacology, 9(2), 125.
      Pistis, M., Porcu, G., Melis, M., Diana, M., & Gessa, G. L. (2001) Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur. J. Neurosci., 14(1), 96-102.
      Pistis, M., Ferraro, L., Pira, L., Flore, G., Tanganelli, S., Gessa, G. L., & Devoto, P. (2002) Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res., 948(1-2), 155-158.
      Pompeiano, M., Palacios, J. M., & Mengod, G. (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol. Brain Res., 23(1-2), 163-178.
      Prescot, A. P., Locatelli, A. E., Renshaw, P. F., & Yurgelun-Todd, D. A. (2011) Neurochemical alterations in adolescent chronic marijuana smokers: a proton MRS study. NeuroImage, 57(1), 69-75.
      Prescot, A. P., Renshaw, P. F., & Yurgelun-Todd, D. A. (2013) γ-Amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers. Drug Alcohol Depen., 129(3), 232-239.
      Pugh, G., Smith, P. B., Dombrowski, D. S., & Welch, S. P. (1996) The role of endogenous opioids in enhancing the antinociception produced by the combination of delta 9-tetrahydrocannabinol and morphine in the spinal cord. J. Pharmacol. Exp. Ther., 279(2), 608-616.
      Pugh, G., Mason, D. J., Combs, V., & Welch, S. P. (1997) Involvement of dynorphin B in the antinociceptive effects of the cannabinoid CP55, 940 in the spinal cord. J. Pharmacol. Exp. Ther., 281(2), 730-737.
      Racz, I., Nadal, X., Alferink, J., Banos, J. E., Rehnelt, J., Martín, M., & Zimmer, A. (2008) Crucial role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J. Neurosci., 28(46), 12125-12135.
      Radhakrishnan, R., Wilkinson, S. T., & D'Souza, D. C. (2014) Gone to pot - A review of the association between cannabis and psychosis. Front. Psychiatry., 5, 54.
      Radhakrishnan, R., Skosnik, P. D., Cortes-Briones, J., Sewell, R. A., Carbuto, M., Schnakenberg, A., … Ranganathan, M. (2015) GABA deficits enhance the psychotomimetic effects of Δ 9-THC. Neuropsychopharmacology, 40(8), 2047.
      Ramaekers, J. G., Berghaus, G., van Laar, M., & Drummer, O. H. (2004) Dose related risk of motor vehicle crashes after cannabis use. Drug Alcohol Depen., 73(2), 109-119.
      Ramaekers, J. G., Berghaus, G., van Laar, M., & Drummer, O. H. (2009) Dose related risk of motor vehicle crashes after cannabis use: an update. In Verster, J.C., Pandi-Perumal, S.R., Ramaekers, J.G., de Gier, J.J. (Eds), Drugs, Driving and Traffic Safety. Basel, Birkhäuser, pp. 477-499.
      Reyes, B. A. S., Rosario, J. C., Piana, P. M. T., & Van Bockstaele, E. J. (2009) Cannabinoid modulation of cortical adrenergic receptors and transporters. J. Neurosci. Res., 87(16), 3671-3678.
      Rigucci, S., Xin, L., Klauser, P., Baumann, P. S., Alameda, L., Cleusix, M., & Gruetter, R. (2018) Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex. Psychopharmacology, 235(1), 13-22.
      Rios, C., Gomes, I., & Devi, L. A. (2006) μ opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Brit. J. Pharmacol., 148(4), 387-395.
      Robbe, D., Alonso, G., Duchamp, F., Bockaert, J., & Manzoni, O. J. (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J. Neurosci., 21(1), 109-116.
      Robledo, P., Berrendero, F., Ozaita, A., & Maldonado, R. (2008) Advances in the field of cannabinoid-opioid cross-talk. Addict. Biol., 13(2), 213-224.
      Rodrıguez, J. J., Mackie, K., & Pickel, V. M. (2001) Ultrastructural localization of the CB1 cannabinoid receptor in μ-opioid receptor patches of the rat caudate putamen nucleus. J. Neurosci., 21(3), 823-833.
      Romero, J. U. L. I. A. N., De Miguel, R., Ramos, J. A., & Fernández-Ruiz, J. J. (1997) The activation of cannabinoid receptors in striatonigral GABAergic neurons inhibited GABA uptake. Life Sci., 62(4), 351-363.
      Rominger, A., Cumming, P., Xiong, G., Koller, G., Förster, S., Zwergal, A., & Pogarell, O. (2013) Effects of acute detoxification of the herbal blend “Spice Gold”on dopamine D 2/3 receptor availability: a [18 F] fallypride PET study. Eur. Neuropsychopharm., 23(11), 1606-1610.
      Safont, G., Corripio, I., Escartí, M. J., Portella, M. J., Pérez, V., Ferrer, M., & Arranz, B. (2011) Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr. Res., 129(2), 169-171.
      Sagredo, O., Ramos, J. A., Fernández-Ruiz, J., Rodríguez, M. L. L., & de Miguel, R. (2006) Chronic Δ 9-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. N-S Arch. Pharmacol., 372(4), 313.
      Salio, C., Fischer, J., Franzoni, M. F., Mackie, K., Kaneko, T., & Conrath, M. (2001) CB1-cannabinoid and μ-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. NeuroReport, 12(17), 3689-3692.
      Sami, M. B., Rabiner, E. A., & Bhattacharyya, S. (2015) Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. Eur. Neuropsychopharm., 25(8), 1201-1224.
      Sano, K., Mishima, K., Koushi, E., Orito, K., Egashira, N., Irie, K., & Uchida, N. (2008) Δ9-Tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience, 151(2), 320-328.
      Sara, S. J. (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci., 10(3), 211-223.
      Scherma, M., Masia, P., Deidda, M., Fratta, W., Tanda, G., & Fadda, P. (2018) New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders. Medicines, 5(4), 107.
      Schlosburg, J. E., Kinsey, S. G., & Lichtman, A. H. (2009) Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS J, 11(1), 39-44.
      Schultz, W. (1997) Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol., 7(2), 191-197.
      Schultz, W. (1998) The phasic reward signal of primate dopamine neurons. In Goldstein, D.S., Eisenhofer, G., McCarty, R. (Eds), Advances in Pharmacology, vol. 42. Academic Press, pp. 686-690.
      Schultz, W. (2001) Reward signaling by dopamine neurons. Neuroscientist, 7(4), 293-302.
      Sell, L. A., Morris, J., Bearn, J., Frackowiak, R. S. J., Friston, K. J., & Dolan, R. J. (1999) Activation of reward circuitry in human opiate addicts. Eur. J. Neurosci., 11(3), 1042-1048.
      Sevy, S., Smith, G. S., Ma, Y., Dhawan, V., Chaly, T., Kingsley, P. B., & Eidelberg, D. (2008) Cerebral glucose metabolism and D 2/D 3 receptor availability in young adults with cannabis dependence measured with positron emission tomography. Psychopharmacology, 197(4), 549-556.
      Shalit, N., Barzilay, R., Shoval, G., Shlosberg, D., Mor, N., Zweigenhaft, N., Weizman, A., & Krivoy, A. (2016) Characteristics of synthetic cannabinoid and cannabis users admitted to a psychiatric hospital: a comparative study. J. Clin. Psychiat., 77(8), 989-995.
      Shearman, L. P., Rosko, K. M., Fleischer, R., Wang, J., Xu, S., Tong, X. S., & Rocha, B. A. (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav. Pharmacol., 14(8), 573-582.
      Shen, M., & Thayer, S. A. (1999) Δ9-Tetrahydrocannabinol acts as a partial agonist to modulate glutamatergic synaptic transmission between rat hippocampal neurons in culture. Mol. Pharmacol., 55(1), 8-13.
      Sidló, Z., Reggio, P. H., & Rice, M. E. (2008) Inhibition of striatal dopamine release by CB1 receptor activation requires nonsynaptic communication involving GABA, H2O2, and KATP channels. Neurochem. Int., 52(1,2), 80-88.
      Smith, P. B., Welch, S. P., & Martin, B. R. (1994) Interactions between delta 9-tetrahydrocannabinol and kappa opioids in mice. J. Pharmacol. Exp. Ther., 268(3), 1381-1387.
      Solinas, M., Panlilio, L. V., Tanda, G., Makriyannis, A., Matthews, S. A., & Goldberg, S. R. (2005) Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology, 30(11), 2046.
      Spanagel, R., & Weiss, F. (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci., 22(11), 521-527.
      Spiga, S., Lintas, A., Migliore, M., & Diana, M. (2010) Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependence. Addict. Biol., 15(3), 266-276.
      Starowicz, K., Malek, N., & Przewlocka, B. (2013) Cannabinoid receptors and pain. WIRES Membr. Transport Signal., 2(3), 121-132.
      Steffens, M., Szabo, B., Klar, M., Rominger, A., Zentner, J., & Feuerstein, T. J. (2003) Modulation of electrically evoked acetylcholine release through cannabinoid CB1 receptors: evidence for an endocannabinoid tone in the human neocortex. Neuroscience, 120(2), 455-465.
      Stokes, P. R. A., Egerton, A., Watson, B., Reid, A., Breen, G., Lingford-Hughes, A., & Mehta, M. A. (2010) Significant decreases in frontal and temporal [11C]-raclopride binding after THC challenge. NeuroImage, 52(4), 1521-1527.
      Stokes, P. R. A., Egerton, A., Watson, B., Reid, A., Lappin, J., Howes, O. D., & Lingford-Hughes, A. R. (2012) History of cannabis use is not associated with alterations in striatal dopamine D2/D3 receptor availability. J. Psychopharmacol., 26(1), 144-149.
      Stone, J. M., Day, F., Tsagaraki, H., Valli, I., McLean, M. A., Lythgoe, D. J., … McGuire, P. K. (2009) Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol. Psychiat., 66(6), 533-539.
      Stone, E. A., Lin, Y., Sarfraz, Y., & Quartermain, D. (2011) The role of the central noradrenergic system in behavioral inhibition. Brain Res. Rev., 67(1-2), 193-208.
      Straiker, A., & Mackie, K. (2005) Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J. Physiol., 569(2), 501-517.
      Suárez, I., Bodega, G., Fernández-Ruiz, J., Ramos, J. A., Rubio, M., & Fernández, B. (2004) Down-regulation of the AMPA glutamate receptor subunits GluR1 and GluR2/3 in the rat cerebellum following pre-and perinatal Δ 9-tetrahydrocannabinol exposure. Cerebellum, 3(2), 66-74.
      Sung, Y.-H., Carey, P. D., Stein, D. J., Ferrett, H. L., Spottiswoode, B. S., Renshaw, P. F., & Yurgelun-Todd, D. A. (2013) Decreased frontal N-acetylaspartate levels in adolescents concurrently using both methamphetamine and marijuana. Behav. Brain Res., 246, 154-161.
      Szabo, B., Dörner, L., Pfreundtner, C., Nörenberg, W., & Starke, K. (1998) Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neuroscience, 85(2), 395-403.
      Szabo, S. T., De Montigny, C., & Blier, P. (1999a) Modulation of noradrenergic neuronal firing by selective serotonin reuptake blockers. Brit. J. Pharmacol., 126(3), 568-571.
      Szabo, B., Müller, T., & Koch, H. (1999b) Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro. J. Neurochem., 73(3), 1084-1089.
      Tanda, G., & Goldberg, S.R. (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms-a review of recent preclinical data. Psychopharmacology, 169(2), 115-134.
      Tanda, G., Pontieri, F. E., & Di Chiara, G. (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science, 276(5321), 2048-2050.
      Tao, R., & Ma, Z. (2012) Neural circuit in the dorsal raphe nucleus responsible for cannabinoid-mediated increases in 5-HT efflux in the nucleus accumbens of the rat brain. ISRN Pharmacol., 2012, 1-10.
      Thompson, R. C., Mansour, A., Akil, H., & Watson, S. J. (1993) Cloning and pharmacological characterization of a rat μ opioid receptor. Neuron, 11(5), 903-913.
      Tomasini, M. C., Ferraro, L., Bebe, B. W., Tanganelli, S., Cassano, T., Cuomo, V., & Antonelli, T. (2002) Δ9-tetrahydrocannabinol increases endogenous extracellular glutamate levels in primary cultures of rat cerebral cortex neurons: involvement of CB1 receptors. J. Neurosci. Res., 68(4), 449-453.
      Trendelenburg, A. U., Cox, S. L., Schelb, V., Klebroff, W., Khairallah, L., & Starke, K. (2000) Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues. Brit. J. Pharmacol., 130(2), 321-330.
      Tsou, K., Mackie, K., Sanudo-Pena, M. C., & Walker, J. M. (1999) Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience, 93(3), 969-975.
      Turna, J., Patterson, B., & Van Ameringen, M. (2017) Is cannabis treatment for anxiety, mood, and related disorders ready for prime time? Depress Anxiety, 34(11), 1006-1017.
      Tzavara, E. T., Davis, R. J., Perry, K. W., Li, X., Salhoff, C., Bymaster, F. P., & Nomikos, G. (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Brit. J. Pharmacol., 138(4), 544-553.
      UNODC (2017) World drug report 2016 (p. 2016). United Nation Office on Drugs and Crime, Vienna.
      Urban, N. B. L., Slifstein, M., Thompson, J. L., Xu, X., Girgis, R. R., Raheja, S., … Abi-Dargham, A. (2012) Dopamine release in chronic cannabis users: a [11c] raclopride positron emission tomography study. Biol. Psychiat., 71(8), 677-683.
      Veeraraghavan, P., & Nistri, A. (2015) Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists. Neuroscience, 303, 16-33.
      Verdejo-García, A., Fagundo, A. B., Cuenca, A., Rodriguez, J., Cuyás, E., Langohr, K., & Pena-Casanova, J. (2013) COMT val158met and 5-HTTLPR genetic polymorphisms moderate executive control in cannabis users. Neuropsychopharmacology, 38(8), 1598.
      Verrico, C. D., Jentsch, J. D., Dazzi, L., & Roth, R. H. (2003) Systemic, but not local, administration of cannabinoid CB1 receptor agonists modulate prefrontal cortical acetylcholine efflux in the rat. Synapse, 48(4), 178-183.
      Vigano, D., Rubino, T., & Parolaro, D. (2005) Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol. Biochem. Be., 81(2), 360-368.
      Viveros, M. P., Marco, E. M., Llorente, R., & Lopez-Gallardo, M. (2007) Endocannabinoid system and synaptic plasticity: implications for emotional responses. Neural. Plast., 2007, 1-21.
      Vizi, E. S., & Kiss, J. P. (1998) Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus, 8(6), 566-607.
      Volkow, N. D., Chang, L., Wang, G.-J., Fowler, J. S., Ding, Y.-S., Sedler, M., & Hitzemann, R. (2001) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiat., 158(12), 2015-2021.
      Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Childress, A. R., & Wong, C. (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J. Neurosci., 26(24), 6583-6588.
      Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Alexoff, D., Logan, J., & Tomasi, D. (2014) Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc. Natl Acad. Sci., 111(30), E3149-E3156.
      Volkow, N. D., Swanson, J. M., Evins, A. E., DeLisi, L. E., Meier, M. H., Gonzalez, R., … Baler, R. (2016) Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA Psychiatry, 73(3), 292-297.
      Weinstein, A., Brickner, O., Lerman, H., Greemland, M., Bloch, M., Lester, H., & Freedman, N. (2008) A study investigating the acute dose-response effects of 13 mg and 17 mg Δ 9-tetrahydrocannabinol on cognitive-motor skills, subjective and autonomic measures in regular users of marijuana. J. Psychopharmacol., 22(4), 441-451.
      Weinstein, A., Livny, A., & Weizman, A. (2016) Brain imaging studies on the cognitive, pharmacological and neurobiological effects of cannabis in humans: evidence from studies of adult users. Curr. Pharm. Des., 22(42), 6366-6379.
      Weinstein, A., Rosca, P., Fattore, L., & London, E. (2017) Synthetic cathinone and cannabinoid designer drugs. Front. Psychiatry., 8, 156.
      Welch, S. P., & Stevens, D. L. (1992) Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J. Pharmacol. Exp. Ther., 262(1), 10-18.
      Wise, R. A. (1978) Catecholamine theories of reward: a critical review. Brain Res., 152(2), 215-247.
      Wise, R. A. (2004) Dopamine, learning and motivation. Nat. Rev. Neurosci., 5(6), 483-494.
      Wise, R. A., & Rompre, P. P. (1989) Brain dopamine and reward. Annu. Rev. Psychol., 40(1), 191-225.
      Wu, X., & French, E. D. (2000) Effects of chronic Δ9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacology, 39(3), 391-398.
      Yeakel, J. K., & Logan, B. K. (2013) Blood synthetic cannabinoid concentrations in cases of suspected impaired driving. J. Anal. Toxicol., 37(8), 547-551.
      Yücel, M., Solowij, N., Respondek, C., Whittle, S., Fornito, A., Pantelis, C., & Lubman, D. I. (2008) Regional brain abnormalities associated with long-term heavy cannabis use. Arch. Gen. Psychiat., 65(6), 694-701.
      Zimmer, A., Valjent, E., König, M., Zimmer, A. M., Robledo, P., Hahn, H., & Maldonado, R. (2001) Absence of Δ-9-tetrahydrocannabinol dysphoric effects in dynorphin-deficient mice. J. Neurosci., 21(23), 9499-9505.
    • Contributed Indexing:
      Keywords: GABA; cannabinoids; dopamine; glutamate; opioids; serotonin
    • Accession Number:
      0 (Cannabinoids)
      0 (Receptor, Cannabinoid, CB1)
      0 (Receptor, Cannabinoid, CB2)
    • Publication Date:
      Date Created: 20190319 Date Completed: 20200807 Latest Revision: 20200807
    • Publication Date:
      20240105
    • Accession Number:
      10.1111/ejn.14407
    • Accession Number:
      30882962