Unmethyl-esterified homogalacturonan and extensins seal Arabidopsis graft union.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100967807 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2229 (Electronic) Linking ISSN: 14712229 NLM ISO Abbreviation: BMC Plant Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2001-
    • Subject Terms:
    • Abstract:
      Background: Grafting is a technique widely used in horticulture. The processes involved in grafting are diverse, and the technique is commonly employed in studies focusing on the mechanisms that regulate cell differentiation or response of plants to abiotic stress. Information on the changes in the composition of the cell wall that occur during the grafting process is scarce. Therefore, this study was carried out for analyzing the composition of the cell wall using Arabidopsis hypocotyls as an example. During the study, the formation of a layer that covers the surface of the graft union was observed. So, this study also aimed to describe the histological and cellular changes that accompany autografting of Arabidopsis hypocotyls and to perform preliminary chemical and structural analyses of extracellular material that seals the graft union.
      Results: During grafting, polyphenolic and lipid compounds were detected, along with extracellular deposition of carbohydrate/protein material. The spatiotemporal changes observed in the structure of the extracellular material included the formation of a fibrillar network, polymerization of the fibrillar network into a membranous layer, and the presence of bead-like structures on the surface of cells in established graft union. These bead-like structures appeared either "closed" or "open". Only three cell wall epitopes, namely: LM19 (un/low-methyl-esterified homogalacturonan), JIM11, and JIM20 (extensins), were detected abundantly on the cut surfaces that made the adhesion plane, as well as in the structure that covered the graft union and in the bead-like structures, during the subsequent stages of regeneration.
      Conclusions: To the best of our knowledge, this is the first report on the composition and structure of the extracellular material that gets deposited on the surface of graft union during Arabidopsis grafting. The results showed that unmethyl-esterified homogalacturonan and extensins are together involved in the adhesion of scion and stock, as well as taking part in sealing the graft union. The extracellular material is of importance not only due to the potential pectin-extensin interaction but also due to its origin. The findings presented here implicate a need for studies with biochemical approach for a detailed analysis of the composition and structure of the extracellular material.
    • References:
      Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2447-E2456. (PMID: 29440499)
      Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:281-309. (PMID: 15012236)
      Plant J. 1994 Feb;5(2):157-72. (PMID: 8148875)
      Plant Cell. 1991 Dec;3(12):1317-1326. (PMID: 12324592)
      Plant Physiol. 2003 Sep;133(1):368-78. (PMID: 12970502)
      J Exp Bot. 2002 Apr;53(369):707-13. (PMID: 11886891)
      Langmuir. 2010 Jun 15;26(12):9891-8. (PMID: 20222720)
      Plant J. 2009 Aug;59(3):413-25. (PMID: 19392693)
      Methods Mol Biol. 2010;655:11-26. (PMID: 20734251)
      Annu Rev Plant Biol. 2010;61:263-89. (PMID: 20192742)
      Biochem J. 1996 Apr 1;315 ( Pt 1):323-7. (PMID: 8670125)
      Plant Physiol. 1992 Jan;98(1):264-72. (PMID: 16668623)
      Plant Cell Rep. 2007 Mar;26(3):355-63. (PMID: 16909227)
      Plant Cell. 2005 Feb;17(2):584-96. (PMID: 15659637)
      J Biol Chem. 2001 Jun 1;276(22):19404-13. (PMID: 11278866)
      Protoplasma. 2012 Jan;249(1):117-29. (PMID: 21424614)
      Plant J. 2010 Oct;64(2):191-203. (PMID: 20659281)
      Plant Physiol. 1997 Apr;113(4):1405-1412. (PMID: 12223681)
      Carbohydr Res. 2009 Sep 28;344(14):1879-900. (PMID: 19616198)
      PLoS One. 2016 Nov 28;11(11):e0167426. (PMID: 27893856)
      Plant Mol Biol. 1996 Mar;30(6):1077-86. (PMID: 8704120)
      Trends Plant Sci. 2001 Sep;6(9):414-9. (PMID: 11544130)
      Plant Cell Rep. 2008 Jul;27(7):1137-45. (PMID: 18340450)
      Mol Plant. 2009 Sep;2(5):851-60. (PMID: 19825662)
      Plant Methods. 2013 Oct 02;9(1):36. (PMID: 24083940)
      Plant Mol Biol. 2001 Sep;47(1-2):9-27. (PMID: 11554482)
      Carbohydr Res. 2001 Sep 28;335(2):115-26. (PMID: 11567642)
      Plant Physiol. 2010 Nov;154(3):1017-23. (PMID: 20855518)
      Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61. (PMID: 16261190)
      Plant Physiol. 1984 Oct;76(2):414-7. (PMID: 16663856)
      Plant Cell. 1993 Jan;5(1):9-23. (PMID: 8439747)
      BMC Plant Biol. 2011 Jun 14;11:106. (PMID: 21672244)
      Plant Physiol. 1995 Aug;108(4):1691-701. (PMID: 7659756)
      Carbohydr Res. 2009 Sep 28;344(14):1858-62. (PMID: 19144326)
      BMC Plant Biol. 2017 Jan 25;17(1):25. (PMID: 28122511)
      Planta. 1988 Jun;174(3):321-32. (PMID: 24221513)
      J Plant Physiol. 2008 May 5;165(7):705-14. (PMID: 17910896)
      Planta. 1995;196(3):510-22. (PMID: 7544182)
      Proc Natl Acad Sci U S A. 1985 Oct;82(19):6551-5. (PMID: 16593612)
      Planta. 2004 Feb;218(4):673-81. (PMID: 14618325)
      J Exp Bot. 2006;57(9):2025-35. (PMID: 16720614)
      Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1756-60. (PMID: 9990097)
      New Phytol. 1988 Mar;108(3):229-257. (PMID: 33873942)
      FASEB J. 1995 Aug;9(11):1004-12. (PMID: 7544308)
      Glycoconj J. 2008 Jan;25(1):37-48. (PMID: 17629746)
      Dev Biol. 1973 Jan;30(1):49-55. (PMID: 4697747)
      J Cell Biol. 1989 May;108(5):1967-77. (PMID: 2469683)
      Ann Bot. 2007 Dec;100(6):1165-73. (PMID: 17881333)
      Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2226-31. (PMID: 18256186)
      Glycobiology. 1996 Mar;6(2):131-9. (PMID: 8727785)
      J Exp Bot. 2012 Jun;63(11):4219-32. (PMID: 22511803)
      Carbohydr Res. 1998 Mar;308(1-2):149-52. (PMID: 9675359)
      Regeneration (Oxf). 2016 Dec 21;4(1):3-14. (PMID: 28316790)
      Plant J. 1991 Nov;1(3):317-326. (PMID: 21736649)
      Plant Cell. 2012 Jun;24(6):2624-34. (PMID: 22693281)
      Ann Bot. 2004 Jan;93(1):53-60. (PMID: 14630693)
      Plant Mol Biol. 1991 Apr;16(4):547-65. (PMID: 1714316)
      Trends Plant Sci. 2007 Jun;12(6):267-77. (PMID: 17499007)
      Tree Physiol. 2005 Nov;25(11):1419-25. (PMID: 16105809)
      Ann Bot. 2014 Oct;114(6):1279-94. (PMID: 24812249)
      BMC Plant Biol. 2008 May 22;8:60. (PMID: 18498625)
      J Exp Bot. 2001 Jan;52(354):1-9. (PMID: 11181708)
      Plant Cell. 1991 Jan;3(1):23-37. (PMID: 12324579)
      Curr Biol. 2015 May 18;25(10):1306-18. (PMID: 25891401)
    • Grant Information:
      2015/17/N/NZ3/01091 Narodowe Centrum Nauki
    • Contributed Indexing:
      Keywords: Arabidopsis; Cell wall epitopes; Extensins; Histology; Homogalacturonan; SEM; Seedling grafting
    • Accession Number:
      0 (Epitopes)
      0 (Glycoproteins)
      0 (Plant Proteins)
      0 (extensin protein, plant)
      89NA02M4RX (Pectins)
      VV3XD4CL04 (polygalacturonic acid)
    • Publication Date:
      Date Created: 20190420 Date Completed: 20190517 Latest Revision: 20231011
    • Publication Date:
      20240104
    • Accession Number:
      PMC6472031
    • Accession Number:
      10.1186/s12870-019-1748-4
    • Accession Number:
      30999851