Effects of feedback delay and agency on feedback-locked beta and theta power during reinforcement learning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      Feedback-based learning initiated by dopamine (DA) cell firing is crucial for adaptive behavior. The nature and context of feedback can vary, however, affecting how feedback is processed. For example, the feedback-related negativity (FRN) in the ERP in humans, which has been linked to the DA system, is reduced for delayed feedback and for observational compared to active learning. Recent research suggested that oscillations in the theta and beta band over the medio-frontal cortex reflect distinct feedback processing mechanisms. In this study, we hypothesized that the power in both frequency bands is affected by feedback delay and agency. We thus investigated effects of feedback delay (1 s vs. 7 s) on induced theta and beta band power and the FRN in a probabilistic feedback learning task in two participant groups, one learning actively and one by observation. For theta and beta, a larger power difference between negative and positive feedback for immediate than delayed feedback was found, driven by positive feedback for beta and by negative feedback for theta, while no differential modulation by agency was seen for theta or beta power following positive and negative feedback. These results indicate that feedback-locked beta and theta both reflect neural processes that are specific for the integration of feedback and recently preceding events, possibly linked to cognitive control and memory. With respect to the FRN amplitude, we could replicate previous findings of both delay and agency modulations, suggesting that the neural processes underlying feedback-locked ERPs and theta and beta power modulations differ.
      (© 2019 Society for Psychophysiological Research.)
    • References:
      Arbel, Y., Hong, L., Baker, T. E., & Holroyd, C. B. (2017). It's all about timing: An electrophysiological examination of feedback-based learning with immediate and delayed feedback. Neuropsychologia, 99, 179-186. https://doi.org/10.1016/j.neuropsychologia.2017.03.003.
      Backus, A. R., Schoffelen, J. M., Szebenyi, S., Hanslmayr, S., & Doeller, C. F. (2016). Hippocampal-prefrontal theta oscillations support memory integration. Current Biology, 26(4), 450-457. https://doi.org/10.1016/j.cub.2015.12.048.
      Becker, M. P., Nitsch, A. M., Miltner, W. H., & Straube, T. (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. Journal of Neuroscience, 34(8), 3005-3012. https://doi.org/10.1523/JNEUROSCI.3684-13.2014.
      Bédard, P., Larochelle, L., Parent, A., & Poirier, L. J. (1969). The nigrostriatal pathway: A correlative study based on neuroanatomical and neurochemical criteria in the cat and the monkey. Experimental Neurology, 25(3), 365-377. https://doi.org/10.1016/0014-4886(69)90131-9.
      Bellebaum, C., & Colosio, M. (2014). From feedback- to response-based performance monitoring in active and observational learning. Journal of Cognitive Neuroscience, 26(9), 2111-2127. https://doi.org/10.1162/jocn_a_00612.
      Bellebaum, C., & Daum, I. (2008). Learning-related changes in reward expectancy are reflected in the feedback-related negativity. European Journal of Neuroscience, 27(7), 1823-1835. https://doi.org/10.1111/j.1460-9568.2008.06138.x.
      Bellebaum, C., Jokisch, D., Gizewski, E. R., Forsting, M., & Daum, I. (2012). The neural coding of expected and unexpected monetary performance outcomes: Dissociations between active and observational learning. Behavioral Brain Research, 227(1), 241-251. https://doi.org/10.1016/j.bbr.2011.10.042.
      Bellebaum, C., Kobza, S., Ferrea, S., Schnitzler, A., Pollok, B., & Sudmeyer, M. (2016). Strategies in probabilistic feedback learning in Parkinson patients OFF medication. Neuroscience, 320, 8-18. https://doi.org/10.1016/j.neuroscience.2016.01.060.
      Bellebaum, C., Kobza, S., Thiele, S., & Daum, I. (2010). It was not MY fault: Event-related brain potentials in active and observational learning from feedback. Cerebral Cortex, 20(12), 2874-2883. https://doi.org/10.1093/cercor/bhq038.
      Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences, 99(1), 523-528. https://doi.org/10.1073/pnas.012470999.
      Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Science, 18(8), 414-421. https://doi.org/10.1016/j.tics.2014.04.012.
      Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198-3209. https://doi.org/10.1016/j.neuroimage.2009.11.080.
      Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology-Paris, 109(1-3), 3-15. https://doi.org/10.1016/j.jphysparis.2014.04.003.
      Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220-238. https://doi.org/10.1111/j.1469-8986.2011.01293.x.
      Chang, S. W., Gariepy, J. F., & Platt, M. L. (2013). Neuronal reference frames for social decisions in primate frontal cortex. Nature Neuroscience, 16(2), 243-250. https://doi.org/10.1038/nn.3287.
      Chatrian, G. E., Lettich, E., & Nelson, P. L. (1988). Modified nomenclature for the “10%” electrode system. Journal of Clinical Neurophysiology, 5(2), 183-186. https://doi.org/10.1097/00004691-198804000-00005.
      Christie, G. J., & Tata, M. S. (2009). Right frontal cortex generates reward-related theta-band oscillatory activity. NeuroImage, 48(2), 415-422. https://doi.org/10.1016/j.neuroimage.2009.06.076.
      Cohen, M. X. (2011a). It's about time. Frontiers in Human Neuroscience, 5, 2. https://doi.org/10.3389/fnhum.2011.00002.
      Cohen, M. X. (2011b). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage, 55(3), 1373-1383. https://doi.org/10.1016/j.neuroimage.2010.12.072.
      Cohen, M. X. (2014a). A neural microcircuit for cognitive conflict detection and signaling. Trends in Neuroscience, 37(9), 480-490. https://doi.org/10.1016/j.tins.2014.06.004.
      Cohen, M. X. (2014b). Analyzing neural time series data: Theory and practice. Cambridge, MA: MIT Press.
      Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752-2763. https://doi.org/10.1152/jn.00479.2013.
      Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142. https://doi.org/10.1016/j.brainres.2008.07.114.
      Cohen, M. X., van Gaal, S., Ridderinkhof, K. R., & Lamme, V. A. (2009). Unconscious errors enhance prefrontal-occipital oscillatory synchrony. Frontiers in Human Neuroscience, 3, 54. https://doi.org/10.3389/neuro.09.054.2009.
      Cohen, M. X., Wilmes, K., & van de Vijver, I. (2011). Cortical electrophysiological network dynamics of feedback learning. Trends in Cognitive Science, 15(12), 558-566. https://doi.org/10.1016/j.tics.2011.10.004.
      Cooper, J. C., Dunne, S., Furey, T., & O'Doherty, J. P. (2012). Human dorsal striatum encodes prediction errors during observational learning of instrumental actions. Journal of Cognitive Neuroscience, 24(1), 106-118. https://doi.org/10.1162/jocn_a_00114.
      de Bruijn, E. R. A., Ruissen, M. I., & Radke, S. (2017). Electrophysiological correlates of oxytocin-induced enhancement of social performance monitoring. Social Cognitive and Affective Neuroscience, 12(10), 1668-1677. https://doi.org/10.1093/scan/nsx094.
      Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70-88. https://doi.org/10.1196/annals.1390.002.
      Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 27-38. https://doi.org/10.3758/CABN.3.1.27.
      Ernst, B., & Steinhauser, M. (2012). Feedback-related brain activity predicts learning from feedback in multiple-choice testing. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 323-336. https://doi.org/10.3758/s13415-012-0087-9.
      Ernst, B., & Steinhauser, M. (2017). Top-down control over feedback processing: The probability of valid feedback affects feedback-related brain activity. Brain and Cognition, 115, 33-40. https://doi.org/10.1016/j.bandc.2017.03.008.
      Feingold, J. (2011). Beta oscillations in frontal cortex and striatum represent post-processing of successful behavior (Doctoral dissertation). Cambridge, MA: Massachusetts Institute of Technology.
      Ferdinand, N. K., Mecklinger, A., Kray, J., & Gehring, W. J. (2012). The processing of unexpected positive response outcomes in the mediofrontal cortex. Journal of Neuroscience, 32(35), 12087-12092. https://doi.org/10.1523/JNEUROSCI.1410-12.2012.
      Fiorillo, C. D., Newsome, W. T., & Schultz, W. (2008). The temporal precision of reward prediction in dopamine neurons. Nature Neuroscience, 11(8), 966-973. https://doi.org/10.1038/nn.2159.
      Foerde, K., Race, E., Verfaellie, M., & Shohamy, D. (2013). A role for the medial temporal lobe in feedback-driven learning: Evidence from amnesia. Journal of Neuroscience, 33(13), 5698-5704. https://doi.org/10.1523/JNEUROSCI.5217-12.2013.
      Foerde, K., & Shohamy, D. (2011). Feedback timing modulates brain systems for learning in humans. Journal of Neuroscience, 31(37), 13157-13167. https://doi.org/10.1523/JNEUROSCI.2701-11.2011.
      Foti, D., Weinberg, A., Bernat, E. M., & Proudfit, G. H. (2015). Anterior cingulate activity to monetary loss and basal ganglia activity to monetary gain uniquely contribute to the feedback negativity. Clinical Neurophysiology, 126(7), 1338-1347. https://doi.org/10.1016/j.clinph.2014.08.025.
      Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943. https://doi.org/10.1126/science.1102941.
      Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282. https://doi.org/10.1126/science.1066893.
      Guitart-Masip, M., Barnes, G. R., Horner, A., Bauer, M., Dolan, R. J., & Duzel, E. (2013). Synchronization of medial temporal lobe and prefrontal rhythms in human decision making. Journal of Neuroscience, 33(2), 442-451. https://doi.org/10.1523/JNEUROSCI.2573-12.2013.
      Haber, S. N., & Fudge, J. L. (1997). The primate substantia nigra and VTA: Integrative circuitry and function. Critical Reviews in Neurobiology, 11(4), 323-342. https://doi.org/10.1615/CritRevNeurobiol.v11.i4.40.
      Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148-154. https://doi.org/10.1016/j.biopsycho.2005.04.001.
      Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It's worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44(6), 905-912. https://doi.org/10.1111/j.1469-8986.2007.00567.x.
      Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42(2), 151-160. https://doi.org/10.1111/j.1469-8986.2005.00270.x.
      Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50(6), 550-562. https://doi.org/10.1111/psyp.12040.
      HajiHosseini, A., & Holroyd, C. B. (2015). Reward feedback stimuli elicit high-beta EEG oscillations in human dorsolateral prefrontal cortex. Scientific Reports, 5, 13021. https://doi.org/10.1038/srep13021.
      Holroyd, C. B. (2004). A note on the oddball N200 and the feedback ERN. Neurophysiology, 78, 447-455.
      Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychology Review, 109(4), 679-709. https://doi.org/10.1037/0033-295X.109.4.679.
      Holroyd, C. B., Hajcak, G., & Larsen, J. T. (2006). The good, the bad and the neutral: Electrophysiological responses to feedback stimuli. Brain Research, 1105(1), 93-101. https://doi.org/10.1016/j.brainres.2005.12.015.
      Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913-917. https://doi.org/10.1111/j.1469-8986.2007.00561.x.
      Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 59-70. https://doi.org/10.3758/CABN.9.1.59.
      Holroyd, C. B., Krigolson, O. E., & Lee, S. (2011). Reward positivity elicited by predictive cues. NeuroReport, 22(5), 249-252. https://doi.org/10.1097/WNR.0b013e328345441d.
      Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. NeuroReport, 14(18), 2481-2484. https://doi.org/10.1097/00001756-200312190-00037.
      Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688-697. https://doi.org/10.1111/j.1469-8986.2008.00668.x.
      Janssen, D. J., Poljac, E., & Bekkering, H. (2016). Binary sensitivity of theta activity for gain and loss when monitoring parametric prediction errors. Social Cognitive and Affective Neuroscience, 11(8), 1280-1289. https://doi.org/10.1093/scan/nsw033.
      Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399-1402. https://doi.org/10.1126/science.273.5280.1399.
      Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinions in Neurology, 18(4), 411-417. https://doi.org/10.1097/01.wco.0000173463.24758.f6.
      Koban, L., Pourtois, G., Bediou, B., & Vuilleumier, P. (2012). Effects of social context and predictive relevance on action outcome monitoring. Cognitive, Affective, & Behavioral Neuroscience, 12(3), 460-478. https://doi.org/10.3758/s13415-012-0091-0.
      Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of dopamine neurons. Journal of Neuroscience, 28(31), 7837-7846. https://doi.org/10.1523/JNEUROSCI.1600-08.2008.
      Kobza, S., & Bellebaum, C. (2015). Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning. Neuropsychologia, 66, 75-87. https://doi.org/10.1016/j.neuropsychologia.2014.10.036.
      Kobza, S., Ferrea, S., Schnitzler, A., Pollok, B., Sudmeyer, M., & Bellebaum, C. (2012). Dissociation between active and observational learning from positive and negative feedback in parkinsonism. PLoS ONE, 7(11), e50250. https://doi.org/10.1371/journal.pone.0050250.
      Lavoie, B., Smith, Y., & Parent, A. (1989). Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. Journal of Comparative Neurology, 289(1), 36-52. https://doi.org/10.1002/cne.902890104.
      Lehéricy, S., Ducros, M., Van De Moortele, P.-F., Francois, C., Thivard, L., Poupon, C., … Kim, D.-S. (2004). Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Annals of Neurology, 55(4), 522-529. https://doi.org/10.1002/ana.20030.
      Li, P., Baker, T. E., Warren, C., & Li, H. (2016). Oscillatory profiles of positive, negative and neutral feedback stimuli during adaptive decision making. International Journal of Psychophysiology, 107, 37-43. https://doi.org/10.1016/j.ijpsycho.2016.06.018.
      Luu, P., Tucker, D. M., & Makeig, S. (2003). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115(8), 1821-1835. https://doi.org/10.1016/j.clinph.2004.03.031.
      Lynd-Balta, E., & Haber, S. N. (1994). The organization of midbrain projections to the ventral striatum in the primate. Neuroscience, 59(3), 609-623. https://doi.org/10.1016/0306-4522(94)90181-3.
      Marco-Pallares, J., Cucurell, D., Cunillera, T., Garcia, R., Andres-Pueyo, A., Munte, T. F., & Rodriguez-Fornells, A. (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia, 46(1), 241-248. https://doi.org/10.1016/j.neuropsychologia.2007.07.016.
      Marco-Pallares, J., Munte, T. F., & Rodriguez-Fornells, A. (2015). The role of high-frequency oscillatory activity in reward processing and learning. Neuroscience & Biobehavioral Reviews, 49, 1-7. https://doi.org/10.1016/j.neubiorev.2014.11.014.
      Mas-Herrero, E., Ripolles, P., HajiHosseini, A., Rodriguez-Fornells, A., & Marco-Pallares, J. (2015). Beta oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses. NeuroIimage, 119, 13-19. https://doi.org/10.1016/j.neuroimage.2015.05.095.
      Miltner, W. H., Braun, C. H., & Coles, M. G. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798. https://doi.org/10.1162/jocn.1997.9.6.788.
      Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244-253. https://doi.org/10.1016/j.neuroimage.2014.12.056.
      Mulligan, E. M., & Hajcak, G. (2018). The electrocortical response to rewarding and aversive feedback: The reward positivity does not reflect salience in simple gambling tasks. International Journal of Psychophysiology, 132(Pt B), 262-267. https://doi.org/10.1016/j.ijpsycho.2017.11.015.
      Murty, V. P., & Adcock, R. A. (2014). Enriched encoding: Reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160-2168. https://doi.org/10.1093/cercor/bht063.
      O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452-454. https://doi.org/10.1126/science.1094285.
      Oliveira, F. T., McDonald, J. J., & Goodman, D. (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the representation of action-outcome associations. Journal of Cognitive Neuroscience, 19(12), 1994-2004. https://doi.org/10.1162/jocn.2007.19.12.1994.
      Opitz, B., Ferdinand, N. K., & Mecklinger, A. (2011). Timing matters: The impact of immediate and delayed feedback on artificial language learning. Frontiers in Human Neuroscience, 5, 8. https://doi.org/10.3389/fnhum.2011.00008.
      Peterburs, J., Kobza, S., & Bellebaum, C. (2016). Feedback delay gradually affects amplitude and valence specificity of the feedback-related negativity (FRN). Psychophysiology, 53(2), 209-215. https://doi.org/10.1111/psyp.12560.
      Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459. https://doi.org/10.1111/psyp.12370.
      Rogers, R. D., Ramnani, N., Mackay, C., Wilson, J. L., Jezzard, P., Carter, C. S., & Smith, S. M. (2004). Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biological Psychiatry, 55(6), 594-602. https://doi.org/10.1016/j.biopsych.2003.11.012.
      Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Current Opinions in Neurobiology, 7(2), 191-197. https://doi.org/10.1016/S0959-4388(97)80007-4.
      Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1(3), 199-207. https://doi.org/10.1038/35044563.
      Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599. https://doi.org/10.1126/science.275.5306.1593.
      Siapas, A. G., Lubenov, E. V., & Wilson, M. A. (2005). Prefrontal phase locking to hippocampal theta oscillations. Neuron, 46(1), 141-151. https://doi.org/10.1016/j.neuron.2005.02.028.
      Simons, R. F. (2010). The way of our errors: Theme and variations. Psychophysiology, 47(1), 1-14. https://doi.org/10.1111/j.1469-8986.2009.00929.x.
      Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94(1), 35-79. https://doi.org/10.1152/physrev.00041.2012.
      van der Molen, M. J. W., Dekkers, L. M. S., Westenberg, P. M., van der Veen, F. M., & van der Molen, M. W. (2017). Why don't you like me? Midfrontal theta power in response to unexpected peer rejection feedback. NeuroImage, 146, 474-483. https://doi.org/10.1016/j.neuroimage.2016.08.045.
      van Schie, H. T., Mars, R. B., Coles, M. G. H., & Bekkering, H. (2004). Modulation of activity in medial frontal and motor cortices during error observation. Nature Neuroscience, 7(5), 549-554. https://doi.org/10.1038/nn1239.
      Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews, 36(8), 1870-1884. https://doi.org/10.1016/j.neubiorev.2012.05.008.
      Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K., & Halgren, E. (2005). Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. Journal of Neuroscience, 25(3), 604-613. https://doi.org/10.1523/JNEUROSCI.4151-04.2005.
      Wang, J., Chen, J., Lei, Y., & Li, P. (2014). P300, not feedback error-related negativity, manifests the waiting cost of receiving reward information. NeuroReport, 25(13), 1044-1048. https://doi.org/10.1097/WNR.0000000000000226.
      Weinberg, A., Luhmann, C. C., Bress, J. N., & Hajcak, G. (2012). Better late than never? The effect of feedback delay on ERP indices of reward processing. Cognitive, Affective & Behavioral Neuroscience, 12(4), 671-677. https://doi.org/10.3758/s13415-012-0104-z.
      Weismuller, B., & Bellebaum, C. (2016). Expectancy affects the feedback-related negativity (FRN) for delayed feedback in probabilistic learning. Psychophysiology, 53(11), 1739-1750. https://doi.org/10.1111/psyp.12738.
      Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931-959. https://doi.org/10.1037/0033-295X.111.4.931.
      Zaghoul, K. A., Blanco, J. A., Weidemann, C. T., McGill, K., Jaggi, J. L., Baltuch, G. H., & Kahana, M. J. (2009). Human substantia nigra neurons encode unexpected financial rewards. Science, 323(5920), 1496-1499. https://doi.org/10.1126/science.1167342.
      Zhou, Z., Yu, R., & Zhou, X. (2010). To do or not to do? Action enlarges the FRN and P300 effects in outcome evaluation. Neuropsychologia, 48(12), 3606-3613. https://doi.org/10.1016/j.neuropsychologia.2010.08.010.
    • Contributed Indexing:
      Keywords: FRN; beta band; feedback delay; feedback learning; observational learning; theta band
    • Publication Date:
      Date Created: 20190628 Date Completed: 20200730 Latest Revision: 20200730
    • Publication Date:
      20240104
    • Accession Number:
      10.1111/psyp.13428
    • Accession Number:
      31245849