Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Choi SB;Choi SB;Choi SB; Kim J; Kim J; Kim J; Ahn I; Ahn I; Ahn I
  • Source:
    PloS one [PLoS One] 2019 Nov 25; Vol. 14 (11), pp. e0220423. Date of Electronic Publication: 2019 Nov 25 (Print Publication: 2019).
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      To identify countries that have seasonal patterns similar to the time series of influenza surveillance data in the United States and other countries, and to forecast the 2018-2019 seasonal influenza outbreak in the U.S., we collected the surveillance data of 164 countries using the FluNet database, search queries from Google Trends, and temperature from 2010 to 2018. Data for influenza-like illness (ILI) in the U.S. were collected from the Fluview database. We identified the time lag between two time-series which were weekly surveillances for ILI, total influenza (Total INF), influenza A (INF A), and influenza B (INF B) viruses between two countries using cross-correlation analysis. In order to forecast ILI, Total INF, INF A, and INF B of next season (after 26 weeks) in the U.S., we developed prediction models using linear regression, auto regressive integrated moving average, and an artificial neural network (ANN). As a result of cross-correlation analysis between the countries located in northern and southern hemisphere, the seasonal influenza patterns in Australia and Chile showed a high correlation with those of the U.S. 22 weeks and 28 weeks earlier, respectively. The R2 score of ANN models for ILI for validation set in 2015-2019 was 0.758 despite how hard it is to forecast 26 weeks ahead. Our prediction models forecast that the ILI for the U.S. in 2018-2019 may be later and less severe than those in 2017-2018, judging from the influenza activity for Australia and Chile in 2018. It allows to estimate peak timing, peak intensity, and type-specific influenza activities for next season at 40th week. The correlation between seasonal influenza patterns in the U.S., Australia, and Chile could be used to forecast the next seasonal influenza pattern, which can help to determine influenza vaccine strategy approximately six months ahead in the U.S.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Am J Epidemiol. 2017 Mar 1;185(5):395-402. (PMID: 28174833)
      PLoS One. 2010 Mar 01;5(3):e9450. (PMID: 20209164)
      Emerg Infect Dis. 2009 Aug;15(8):1271-8. (PMID: 19751590)
      PLoS One. 2018 Feb 21;13(2):e0193263. (PMID: 29466459)
      Emerg Infect Dis. 2004 Jan;10(1):32-9. (PMID: 15078594)
      Influenza Other Respir Viruses. 2016 May;10(3):176-84. (PMID: 26781162)
      Nature. 2009 Feb 19;457(7232):1012-4. (PMID: 19020500)
      PLoS Comput Biol. 2017 Feb 3;13(2):e1005330. (PMID: 28158192)
      Nature. 2015 Jul 9;523(7559):217-20. (PMID: 26053121)
      Clin Infect Dis. 2007 Jan 15;44(2):272-9. (PMID: 17173231)
      Sci Rep. 2015 Dec 01;5:17214. (PMID: 26621769)
      PLoS Pathog. 2013 Mar;9(3):e1003194. (PMID: 23505366)
      Hum Vaccin Immunother. 2018 Mar 4;14(3):678-683. (PMID: 29337643)
      Euro Surveill. 2017 Aug 31;22(35):. (PMID: 28877844)
      Elife. 2018 Feb 27;7:. (PMID: 29485041)
      Sci Rep. 2018 Mar 20;8(1):4895. (PMID: 29559649)
      Influenza Other Respir Viruses. 2017 Mar;11(2):102-109. (PMID: 27650482)
      Methods Mol Biol. 2008;458:15-23. (PMID: 19065803)
      Nature. 2015 May 28;521(7553):436-44. (PMID: 26017442)
      PLoS One. 2013 Dec 05;8(12):e81422. (PMID: 24339927)
      Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2802-2804. (PMID: 30737293)
      PLoS Curr. 2018 Jan 17;10:. (PMID: 29588875)
      Nat Rev Microbiol. 2018 Jan;16(1):47-60. (PMID: 29081496)
      PLoS Comput Biol. 2016 Nov 17;12(11):e1005201. (PMID: 27855155)
      Health Policy. 2019 Mar;123(3):338-341. (PMID: 30660346)
      PLoS One. 2014 Apr 08;9(4):e94130. (PMID: 24714027)
      PLoS Comput Biol. 2015 May 14;11(5):e1004239. (PMID: 25974758)
      Online J Public Health Inform. 2017 Sep 08;9(2):e187. (PMID: 29026453)
      Am J Epidemiol. 2015 Oct 15;182(8):705-13. (PMID: 26400854)
      PLoS One. 2018 Feb 13;13(2):e0192681. (PMID: 29438406)
      Epidemiol Infect. 2018 May;146(7):809-816. (PMID: 29606177)
      Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30. (PMID: 23184969)
    • Publication Date:
      Date Created: 20191126 Date Completed: 20200319 Latest Revision: 20200319
    • Publication Date:
      20240104
    • Accession Number:
      PMC6876883
    • Accession Number:
      10.1371/journal.pone.0220423
    • Accession Number:
      31765386