Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Studies of the interactions between plants and their microbiome have been conducted worldwide in the search for growth-promoting representative strains for use as biological inputs for agriculture, aiming to achieve more sustainable agriculture practices. With a focus on the isolation of plant growth-promoting (PGP) bacteria with ability to alleviate N stress, representative strains that were found at population densities greater than 104 cells g-1 and that could grow in N-free semisolid media were isolated from soils under different management conditions and from the roots of tomato (Solanum lycopersicum) and lulo (Solanum quitoense) plants that were grown in those soils. A total of 101 bacterial strains were obtained, after which they were phylogenetically categorized and characterized for their basic PGP mechanisms. All strains belonged to the Proteobacteria phylum in the classes Alphaproteobacteria (61% of isolates), Betaproteobacteria (19% of isolates) and Gammaproteobacteria (20% of isolates), with distribution encompassing nine genera, with the predominant genus being Rhizobium (58.4% of isolates). Strains isolated from conventional horticulture (CH) soil composed three bacterial genera, suggesting a lower diversity for the diazotrophs/N scavenger bacterial community than that observed for soils under organic management (ORG) or secondary forest coverture (SF). Conversely, diazotrophs/N scavenger strains from tomato plants grown in CH soil comprised a higher number of bacterial genera than did strains isolated from tomato plants grown in ORG or SF soils. Furthermore, strains isolated from tomato were phylogenetically more diverse than those from lulo. BOX-PCR fingerprinting of all strains revealed a high genetic diversity for several clonal representatives (four Rhizobium species and one Pseudomonas species). Considering the potential PGP mechanisms, 49 strains (48.5% of the total) produced IAA (2.96-193.97 μg IAA mg protein-1), 72 strains (71.3%) solubilized FePO4 (0.40-56.00 mg l-1), 44 strains (43.5%) solubilized AlPO4 (0.62-17.05 mg l-1), and 44 strains produced siderophores (1.06-3.23). Further, 91 isolates (90.1% of total) showed at least one PGP trait, and 68 isolates (67.3%) showed multiple PGP traits. Greenhouse trials using the bacterial collection to inoculate tomato or lulo plants revealed increases in plant biomass (roots, shoots or both plant tissues) elicited by 65 strains (54.5% of the bacterial collection), of which 36 were obtained from the tomato rhizosphere, 15 were obtained from the lulo rhizosphere, and 14 originated from samples of soil that lacked plants. In addition, 18 strains showed positive inoculation effects on both Solanum species, of which 12 were classified as Rhizobium spp. by partial 16S rRNA gene sequencing. Overall, the strategy adopted allowed us to identify the variability in the composition of culturable diazotroph/N-scavenger representatives from soils under different management conditions by using two Solanum species as trap plants. The present results suggest the ability of tomato and lulo plants to enrich their belowground microbiomes with rhizobia representatives and the potential of selected rhizobial strains to promote the growth of Solanum crops under limiting N supply.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Plant Cell Environ. 2013 May;36(5):909-19. (PMID: 23145472)
      New Phytol. 2015 Jun;206(4):1196-206. (PMID: 25655016)
      Int J Mol Sci. 2016 Jul 29;17(8):. (PMID: 27483244)
      World J Microbiol Biotechnol. 2017 Oct 27;33(11):203. (PMID: 29079927)
      FEMS Microbiol Lett. 2014 Feb;351(2):187-94. (PMID: 24417185)
      PLoS One. 2017 Aug 3;12(8):e0182302. (PMID: 28771547)
      Plant Physiol. 2011 Jul;156(3):989-96. (PMID: 21606316)
      FEMS Microbiol Ecol. 2018 Jul 1;94(7):. (PMID: 29771325)
      FEMS Microbiol Ecol. 2017 Apr 1;93(4):. (PMID: 28334155)
      Microbiol Res. 2008;163(2):173-81. (PMID: 16735107)
      Microb Biotechnol. 2017 Jan;10(1):19-21. (PMID: 27790851)
      Appl Environ Microbiol. 2019 Jan 9;85(2):. (PMID: 30413478)
      Int J Syst Evol Microbiol. 2009 Feb;59(Pt 2):367-72. (PMID: 19196780)
      J Appl Microbiol. 2011 Sep;111(3):683-92. (PMID: 21672102)
      Front Plant Sci. 2017 Jul 19;8:1263. (PMID: 28769964)
      Appl Environ Microbiol. 1981 Jul;42(1):97-101. (PMID: 16345819)
      Evolution. 2019 Sep;73(9):2013-2023. (PMID: 31334838)
      PLoS One. 2015 Jun 08;10(6):e0128272. (PMID: 26053848)
      Plant Physiol. 2011 Jul;156(3):997-1005. (PMID: 21571668)
      Curr Opin Microbiol. 2017 Aug;38:188-196. (PMID: 28732267)
      Sci Rep. 2019 Jan 31;9(1):1044. (PMID: 30705339)
      PLoS One. 2013 Aug 20;8(8):e72293. (PMID: 23977273)
      Genes (Basel). 2018 Mar 14;9(3):null. (PMID: 29538303)
      J Biol Chem. 1995 Nov 10;270(45):26723-6. (PMID: 7592901)
      Anal Biochem. 1976 May 7;72:248-54. (PMID: 942051)
      Environ Microbiol. 2016 Sep;18(8):2375-91. (PMID: 26395550)
      Trends Plant Sci. 2019 Aug;24(8):741-754. (PMID: 31230894)
      Microbiol Res. 2016 Feb;183:92-9. (PMID: 26805622)
      Springerplus. 2013 Oct 31;2:587. (PMID: 25674415)
      Biotechnol Lett. 2006 Jan;28(1):55-9. (PMID: 16369876)
      FEMS Microbiol Ecol. 2019 May 1;95(5):null. (PMID: 30924865)
      Curr Microbiol. 2001 Jul;43(1):51-6. (PMID: 11375664)
      Appl Environ Microbiol. 2007 Aug;73(16):5308-19. (PMID: 17601817)
      Genet Mol Biol. 2015 Dec;38(4):401-19. (PMID: 26537605)
      Appl Environ Microbiol. 2007 Aug;73(16):5261-7. (PMID: 17586664)
      Microb Cell Fact. 2014 May 08;13:66. (PMID: 24885352)
      World J Microbiol Biotechnol. 2017 Oct 6;33(11):197. (PMID: 28986676)
      Annu Rev Microbiol. 2012;66:265-83. (PMID: 22726216)
      BMC Microbiol. 2013 May 24;13:114. (PMID: 23705801)
      Front Microbiol. 2018 May 15;9:968. (PMID: 29867872)
      Trends Plant Sci. 2016 Mar;21(3):171-173. (PMID: 26853594)
      J Microbiol Biotechnol. 2012 Apr;22(4):437-47. (PMID: 22534289)
      Sci Rep. 2018 Dec 20;8(1):18006. (PMID: 30573737)
      PLoS Biol. 2016 Jan 20;14(1):e1002352. (PMID: 26788878)
      Ecology. 2015 Jan;96(1):134-42. (PMID: 26236898)
      Plant Physiol. 2014 Oct;166(2):701-19. (PMID: 25118253)
      Can J Microbiol. 1996 Mar;42(3):279-83. (PMID: 8868235)
      PLoS One. 2015 Sep 30;10(9):e0139468. (PMID: 26422789)
      Methods Enzymol. 1994;235:329-44. (PMID: 8057905)
      Sci Rep. 2019 Jul 17;9(1):10389. (PMID: 31316117)
      Trends Plant Sci. 2012 Aug;17(8):478-86. (PMID: 22564542)
      Anal Biochem. 1987 Jan;160(1):47-56. (PMID: 2952030)
      J Adv Res. 2019 Mar 20;19:29-37. (PMID: 31341667)
      Front Plant Sci. 2014 Nov 06;5:607. (PMID: 25414716)
      Nat Rev Microbiol. 2018 May;16(5):291-303. (PMID: 29379215)
      Front Plant Sci. 2017 Mar 31;8:443. (PMID: 28408912)
      Science. 2011 May 27;332(6033):1097-100. (PMID: 21551032)
      Plant Mol Biol. 2016 Apr;90(6):575-87. (PMID: 26729479)
      Environ Sci Pollut Res Int. 2016 Mar;23(5):3984-99. (PMID: 25758420)
      Appl Biochem Biotechnol. 2014 Feb;172(4):1735-46. (PMID: 24258791)
      Syst Appl Microbiol. 2006 Jun;29(4):315-32. (PMID: 16442259)
      Annu Rev Plant Biol. 2013;64:807-38. (PMID: 23373698)
      J Microbiol. 2016 Dec;54(12):823-831. (PMID: 27888459)
      Mol Biol Evol. 2016 Jul;33(7):1870-4. (PMID: 27004904)
      Genes Genomics. 2018 Aug;40(8):857-864. (PMID: 30047115)
      PLoS One. 2017 May 25;12(5):e0178425. (PMID: 28542542)
      FEMS Microbiol Lett. 2004 Aug 15;237(2):187-93. (PMID: 15321661)
      Environ Microbiol. 2017 Apr;19(4):1391-1406. (PMID: 27871141)
    • Accession Number:
      N762921K75 (Nitrogen)
    • Publication Date:
      Date Created: 20200111 Date Completed: 20200420 Latest Revision: 20221207
    • Publication Date:
      20240105
    • Accession Number:
      PMC6953851
    • Accession Number:
      10.1371/journal.pone.0227422
    • Accession Number:
      31923250