N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100967807 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2229 (Electronic) Linking ISSN: 14712229 NLM ISO Abbreviation: BMC Plant Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2001-
    • Subject Terms:
    • Abstract:
      Backgroud: Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress.
      Results: In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation.
      Conclusions: Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.
    • References:
      Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 2009;60:379–406 https://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105346 . (PMID: 10.1146/annurev.arplant.57.032905.105346)
      Dodds P, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet. 2010 Aug;11(8):539–48. https://doi.org/10.1038/nrg2812 . (PMID: 10.1038/nrg281220585331)
      Bonardi V, Dangl JL. How complex are intracellular immune receptor signaling complexes? Front Plant Sci. 2012;3:237. https://doi.org/10.3389/fpls.2012.00237 . (PMID: 10.3389/fpls.2012.00237231099353478704)
      Jacob F, Vernaldi S, Maekawa T. Evolution and conservation of plant NLR functions. Front Immunol. 2013;4:297. https://doi.org/10.3389/fimmu.2013.00297 . (PMID: 10.3389/fimmu.2013.00297240930223782705)
      Van Wees SC, Van der Ent S, Pieterse CM. Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol. 2008;11(4):443–8. https://doi.org/10.1016/j.pbi.2008.05.005 . (PMID: 10.1016/j.pbi.2008.05.00518585955)
      Dempsey DA, Klessig DF. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 2012;17(9):538–45. https://doi.org/10.1016/j.tplants.2012.05.011 . (PMID: 10.1016/j.tplants.2012.05.01122749315)
      Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–63. https://doi.org/10.1146/annurev-arplant-042811-105606 . (PMID: 10.1146/annurev-arplant-042811-10560623373699)
      Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci. 2013;4:30 https://www.frontiersin.org/articles/10.3389/fpls.2013.00030/full . (PMID: 10.3389/fpls.2013.00030)
      Conrath U, Pieterse CM, Mauch-Mani B. Priming in plant-pathogen interactions. Trends Plant Sci. 2002;7(5):210–6. (PMID: 10.1016/S1360-1385(02)02244-6)
      Barilli E, Rubiales D, Amalfitano C, et al. BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta. 2015;242(5):1095–106. https://doi.org/10.1007/s00425-015-2339-8 . (PMID: 10.1007/s00425-015-2339-826059606)
      Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16(10):524–31 https://linkinghub.elsevier.com/retrieve/pii/S1360138511001300 . (PMID: 10.1016/j.tplants.2011.06.004)
      Beckers GJ, Jaskiewicz M, Liu Y, et al. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell. 2009 Mar;21(3):944–53. https://doi.org/10.1105/tpc.108.062158 . (PMID: 10.1105/tpc.108.062158193186102671697)
      Po-Wen C, Singh P, Zimmerli L. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol Plant Pathol. 2013 Jan;14(1):58–70. https://doi.org/10.1111/j.1364-3703.2012.00827.x . (PMID: 10.1111/j.1364-3703.2012.00827.x22947164)
      Van Hulten M, Pelser M, van Loon LC, et al. Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103(14):5602–7. https://doi.org/10.1073/pnas.0510213103 . (PMID: 10.1073/pnas.0510213103165652181459400)
      Kauss H, Theisinger-Hinkel E, Mindermann R, et al. Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor response in parsley. Plant J. 1992;(5):655–60 http://doi.wiley.com/10.1111/j.1365-313X.1992.tb00134.x.
      Ton J, Jakab G, Toquin V, et al. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell. 2005;17(3):987–99. https://doi.org/10.1105/tpc.104.029728 . (PMID: 10.1105/tpc.104.029728157224641069713)
      Tsai CH, Singh P, Chen CW, et al. Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine. Plant J. 2011 Feb;65(3):469–79. https://doi.org/10.1111/j.1365-313X.2010.04436.x . (PMID: 10.1111/j.1365-313X.2010.04436.x21265899)
      Jung HW, Tschaplinski TJ, Wang L, et al. Priming in systemic plant immunity. Science. 2009;324(5923):89–91. https://doi.org/10.1126/science.1170025 . (PMID: 10.1126/science.117002519342588)
      Park SW, Kaimoyo E, Kumar D, et al. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science. 2007;318(5847):113–6. https://doi.org/10.1126/science.1147113 . (PMID: 10.1126/science.114711317916738)
      Návarová H, Bernsdorff F, Döring AC, et al. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 2012;24(12):5123–41. https://doi.org/10.1105/tpc.112.103564 . (PMID: 10.1105/tpc.112.103564232215963556979)
      Lachhab N, Sanzani SM, Adrian M, et al. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola. Front Plant Sci. 2014 Dec 23;5:716. https://doi.org/10.3389/fpls.2014.00716 . (PMID: 10.3389/fpls.2014.00716255662904274885)
      Kravchenko VV, Kaufmann GF, Mathison JC, et al. Modulation of gene expression via disruption of NF-kappa B signaling by a bacterial small molecule. Science. 2008;321(5886):259–63. https://doi.org/10.1126/science.1156499 . (PMID: 10.1126/science.115649918566250)
      Nakagami G, Minematsu T, Morohoshi T, et al. Pseudomonas aeruginosa quorum-sensing signaling molecule N-(3-oxododecanoyl)-homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblast. Biosci Biotechnol Biochem. 2015;79(10):1719–24. https://doi.org/10.1080/09168451.2015.1056509 . (PMID: 10.1080/09168451.2015.105650926096293)
      Bortolotti D, LeMaoult J, Trapella C, et al. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-homoserine-L-lactone (3-O-C12-HSL) induces HLA-G expression in human immune cells. Infect Immun. 2015;83(10):3918–25. https://doi.org/10.1128/IAI.00803-15 . (PMID: 10.1128/IAI.00803-15261955474567644)
      Jahoor A, Patel R, Bryan A, et al. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol. 2008 Jul;190(13):4408–15. https://doi.org/10.1128/JB.01444-07 . (PMID: 10.1128/JB.01444-07181787382446782)
      Miao C, Liu F, Zhao Q, et al. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal. Biochem Biophys Res Commun. 2012;427(2):293–8. https://doi.org/10.1016/j.bbrc.2012.09.044 . (PMID: 10.1016/j.bbrc.2012.09.04422995300)
      Von rad U, Klein I, Dobrev PI, et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta. 2008 Dec; 229 (1):73–85. https://www.ncbi.nlm.nih.gov/pubmed/18766372.
      Schenk ST, Hernández-Reyes C, Samans B, et al. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell. 2014;26(6):2708–23. https://doi.org/10.1105/tpc.114.126763 . (PMID: 10.1105/tpc.114.126763249630574114961)
      Schuhegger R, Ihring A, Gantner S, et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 2006;29(5):909–18. https://doi.org/10.1111/j.1365-3040.2005.01471.x . (PMID: 10.1111/j.1365-3040.2005.01471.x17087474)
      Klein I, Von Rad U, Durner J. Homoserine lactones: do plants really listen to bacterial talk? Plant Signal Behav. 2009;4(1):50–1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634072/ . (PMID: 10.4161/psb.4.1.7300)
      Song S, Jia Z, Xu J, et al. N-butyrylhomoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochem Biophys Res Commun. 2014;414:355–60 https://www.ncbi.nlm.nih.gov/pubmed/25628641 . (PMID: 10.1016/j.bbrc.2011.09.076)
      Liu F, Bian Z, Jia Z, et al. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol Plant-Microbe Interact. 2012;25(5):677–83. https://doi.org/10.1094/MPMI-10-11-0274 . (PMID: 10.1094/MPMI-10-11-027422250582)
      Zhao Q, Zhang C, Jia Z, et al. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Front Plant Sci. 2015;5:807. https://doi.org/10.3389/fpls.2014.00807 . (PMID: 10.3389/fpls.2014.00807256286414292405)
      Zhao Q, Li M, Jia Z, et al. AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-Oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana. Mol Plant-Microbe Interact. 2016;29(10):774–85. https://doi.org/10.1094/MPMI-03-16-0063-R . (PMID: 10.1094/MPMI-03-16-0063-R27604593)
      Pang Y, Liu X, Ma Y, et al. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol. 2009;124:261–8. https://doi.org/10.1007/s10658-008-9411-1 . (PMID: 10.1007/s10658-008-9411-1)
      Zarkani AA, Stein E, Röhrich CR, et al. Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci. 2013;14(8):17122–46. https://doi.org/10.3390/ijms140817122 . (PMID: 10.3390/ijms140817122239659763759955)
      Hernández-Reyes C, Schenk ST, Neumann C, et al. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol. 2014;7(6):580–8. https://doi.org/10.1111/1751-7915.12177 . (PMID: 10.1111/1751-7915.12177252343904265076)
      Schikora A, Schenk ST, Stein E, et al. N-acyl-homoserine lactone confers resistance towards biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 2011;157(3):1407–18. 10.1104%2Fpp.111.180604 . (PMID: 10.1104/pp.111.180604)
      Schenk ST, Stein E, Kogel KH, et al. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav. 2012;7(2):178–81. 10.4161%2Fpsb.18789 . (PMID: 10.4161/psb.18789)
      Prithiviraj B, Perry LG, Badri DV, et al. Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytol. 2007;173(4):852–60. https://doi.org/10.1111/j.1469-8137.2006.01964.x . (PMID: 10.1111/j.1469-8137.2006.01964.x17286833)
      Wang L, Tsuda K, Truman W, et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 2011;67(6):1029–41. https://doi.org/10.1111/j.1365-313X.2011.04655.x . (PMID: 10.1111/j.1365-313X.2011.04655.x21615571)
      Zhang Y, Xu S, Ding P, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci U S A. 2010;107(42):18220–5. https://doi.org/10.1073/pnas.1005225107 . (PMID: 10.1073/pnas.1005225107209214222964219)
      Wan D, Li R, Zou B, et al. Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep. 2012 Jul;31(7):1269–81. https://doi.org/10.1007/s00299-012-1247-7 . (PMID: 10.1007/s00299-012-1247-722466450)
      Jin G, Liu F, Ma H, et al. Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochem Biophys Res Commun. 2012;417(3):991–5. https://doi.org/10.1016/j.bbrc.2011.12.066 . (PMID: 10.1016/j.bbrc.2011.12.06622206669)
      Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 2007 Dec;153(Pt 12):3923–38. https://doi.org/10.1099/mic.0.2007/012856-0 . (PMID: 10.1099/mic.0.2007/012856-018048907)
      Ortiz-Castro R, Martínez-Trujillo M, López-Bucio J. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signal alters post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ. 2008;31:1497–509. (PMID: 10.1111/j.1365-3040.2008.01863.x)
      Schenk ST, Schikora A. AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci. 2015;5:784. https://doi.org/10.3389/fpls.2014.00784 . (PMID: 10.3389/fpls.2014.00784256422354294120)
      Bai X, Todd CD, Desikan R, et al. N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol. 2012;158(2):725–36. https://doi.org/10.1104/pp.111.185769 . (PMID: 10.1104/pp.111.18576922138973)
      Pierson EA, Wood DW, Cannon JA, Pierson LS. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant-Microbe Interact. 1998;11:1078–84. https://doi.org/10.1094/MPMI.1998.11.11.1078 . (PMID: 10.1094/MPMI.1998.11.11.1078)
      Gleen F, Dulla J, et al. Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves. ISME J. 2009;3:825–34. https://doi.org/10.1038/ismej.2009.30 . (PMID: 10.1038/ismej.2009.30)
      Orozco-Cardenas ML, Narveaez-Vasquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell. 2001;13(1):179–91 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102208/ . (PMID: 11158538102208)
      Pellinen RI, Korhonen MS, Tauriainen AA, et al. Hydrogen peroxide activates cell death and defense gene expression in brich. Plant Physiol. 2002;130(2):549–60. 10.1104%2Fpp.003954 . (PMID: 10.1104/pp.003954)
      Siegrist J, Orober M, Buchenauer H. β-Aminobutyric acid-mediated enhancement of resistance in tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol Mol Plant Pathol. 2000;56:95–106. https://doi.org/10.1006/pmpp.1999.0255 . (PMID: 10.1006/pmpp.1999.0255)
      Zimmerli L, Jakab G, Metraux JP, et al. Potentiation of pathogen-specific defense mechanisms in Arabidopsis byβ-aminobutyric acid. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12920–5. https://doi.org/10.1073/pnas.230416897 . (PMID: 10.1073/pnas.2304168971105816618865)
      Joshi JR, Burdman S, Lipsky A, et al. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Mol Plant Pathol. 2016;17(4):487–500. https://doi.org/10.1111/mpp.12295 . (PMID: 10.1111/mpp.1229526177258)
      Deepark S, Shailasree S, Kini RK, et al. Hydroproline-rich glycoprotein and plant defence. J Phytopathol. 2010;158(9):585–93. https://doi.org/10.1111/j.1439-0434.2010.01669.x . (PMID: 10.1111/j.1439-0434.2010.01669.x)
      Götz-Rösch C, Sieper T, Fekete A, et al. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci. 2015;6:205. https://doi.org/10.3389/fpls.2015.00205 . (PMID: 10.3389/fpls.2015.00205259146994392610)
      Weisshaar B, Jenkins GI. Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol. 1998;1(3):251–7 http://linkinghub.elsevier.com/retrieve/pii/S1369526698801131 . (PMID: 10.1016/S1369-5266(98)80113-1)
      Dixon RA, Paiva NL. Stress-induced Phenylpropanoid metabolism. Plant Cell. 1995 Jul;7(7):1085–97. https://doi.org/10.1105/tpc.7.7.1085 . (PMID: 10.1105/tpc.7.7.10851224239912242399)
      Gay C, Collins J, Gebicki JM. Determination of iron in solutions with the ferric-xylenol orange complex. Anal Biochem. 1999;273(2):143–8. https://doi.org/10.1006/abio.1999.4207 . (PMID: 10.1006/abio.1999.420710469483)
      Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C T)) method. Methods. 2001;25(4):402–408. doi: https://doi.org/10.1006/meth.2001.1262 .
      Ilya R, Ivan M, Wayne R. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci U S A. 1989;86(7):2214–8. 10.1073%2Fpnas.86.7.2214 . (PMID: 10.1073/pnas.86.7.2214)
      Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. https://doi.org/10.1016/0003-2697(71)90370-8 . (PMID: 10.1016/0003-2697(71)90370-84943714)
      Tang YH, et al. JcDRFB2, a physic nut AP2/ERF gene, Alters Plant Growth and Salinity Stress Response in Transgenic RiceFront. Plant Sci. 2017;8:306. https://doi.org/10.3389/fpls.2017.00306 . (PMID: 10.3389/fpls.2017.00306)
      Wang YC, Gao CQ, Liang YN, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol. 2010 Feb 15;167(3):222–30. https://doi.org/10.1016/j.jplph.2009.09.008 . (PMID: 10.1016/j.jplph.2009.09.00819853962)
      Gurr SJ, et al. Molecular plant pathology- a practical approach, vol I. Physiol Mol Plant Pathol. 1992;40(3):226. https://doi.org/10.1016/0885-5765(92)90064-3 . (PMID: 10.1016/0885-5765(92)90064-3)
    • Grant Information:
      2015CB150600 National Basic Research Program of China (973 Program); 31270880 National Science Foundation of China; C2015302020 Natural science Foundation of Hebei
    • Contributed Indexing:
      Keywords: Arabidopsis thaliana; N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL); Plant defense; Priming; Quorum sensing (QS); Salicylic acid (SA)
    • Accession Number:
      0 (Arabidopsis Proteins)
      0 (CBP60g protein, Arabidopsis)
      0 (Calmodulin-Binding Proteins)
      0 (SARD1 protein, Arabidopsis)
      1192-20-7 (homoserine lactone)
      147445-32-7 (PR-1 protein, Arabidopsis)
      EC 5.4.- (Intramolecular Transferases)
      EC 5.4.4.2 (isochorismate synthase)
      O414PZ4LPZ (Salicylic Acid)
      OL659KIY4X (4-Butyrolactone)
    • Publication Date:
      Date Created: 20200130 Date Completed: 20200605 Latest Revision: 20220420
    • Publication Date:
      20240105
    • Accession Number:
      PMC6986161
    • Accession Number:
      10.1186/s12870-019-2228-6
    • Accession Number:
      31992205