Babesia bovis Rad51 ortholog influences switching of ves genes but is not essential for segmental gene conversion in antigenic variation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, c2005-
    • Subject Terms:
    • Abstract:
      The tick-borne apicomplexan parasite, Babesia bovis, a highly persistent bovine pathogen, expresses VESA1 proteins on the infected erythrocyte surface to mediate cytoadhesion. The cytoadhesion ligand, VESA1, which protects the parasite from splenic passage, is itself protected from a host immune response by rapid antigenic variation. B. bovis relies upon segmental gene conversion (SGC) as a major mechanism to vary VESA1 structure. Gene conversion has been considered a form of homologous recombination (HR), a process for which Rad51 proteins are considered pivotal components. This could make BbRad51 a choice target for development of inhibitors that both interfere with parasite genome integrity and disrupt HR-dependent antigenic variation. Previously, we knocked out the Bbrad51 gene from the B. bovis haploid genome, resulting in a phenotype of sensitivity to methylmethane sulfonate (MMS) and apparent loss of HR-dependent integration of exogenous DNA. In a further characterization of BbRad51, we demonstrate here that ΔBbrad51 parasites are not more sensitive than wild-type to DNA damage induced by γ-irradiation, and repair their genome with similar kinetics. To assess the need for BbRad51 in SGC, RT-PCR was used to observe alterations to a highly variant region of ves1α transcripts over time. Mapping of these amplicons to the genome revealed a significant reduction of in situ transcriptional switching (isTS) among ves loci, but not cessation. By combining existing pipelines for analysis of the amplicons, we demonstrate that SGC continues unabated in ΔBbrad51 parasites, albeit at an overall reduced rate, and a reduction in SGC tract lengths was observed. By contrast, no differences were observed in the lengths of homologous sequences at which recombination occurred. These results indicate that, whereas BbRad51 is not essential to babesial antigenic variation, it influences epigenetic control of ves loci, and its absence significantly reduces successful variation. These results necessitate a reconsideration of the likely enzymatic mechanism(s) underlying SGC and suggest the existence of additional targets for development of small molecule inhibitors.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Biotechniques. 1997 Jun;22(6):1128-32. (PMID: 9187763)
      Eukaryot Cell. 2012 Mar;11(3):260-9. (PMID: 22286091)
      Mol Biochem Parasitol. 1997 Nov;89(2):259-70. (PMID: 9364970)
      Science. 2015 Aug 28;349(6251):977-81. (PMID: 26315438)
      Antimicrob Agents Chemother. 2004 May;48(5):1807-10. (PMID: 15105139)
      Microbes Infect. 2003 Apr;5(5):365-72. (PMID: 12737991)
      Mutat Res. 2013 Oct;750(1-2):23-30. (PMID: 23927873)
      Mol Microbiol. 2006 Jan;59(2):402-14. (PMID: 16390438)
      Mol Cell Biol. 1999 Jun;19(6):4134-42. (PMID: 10330153)
      Infect Genet Evol. 2004 Jun;4(2):91-8. (PMID: 15157626)
      PLoS One. 2012;7(7):e41925. (PMID: 22860032)
      Genetics. 1996 Jan;142(1):91-102. (PMID: 8770587)
      PLoS Pathog. 2007 Oct 19;3(10):1401-13. (PMID: 17953480)
      Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6577-80. (PMID: 8341671)
      Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
      Mol Biochem Parasitol. 2009 Jul;166(1):47-53. (PMID: 19428672)
      J Cell Biol. 2014 Jul 7;206(1):29-43. (PMID: 24982429)
      Mol Biochem Parasitol. 2004 Mar;134(1):27-35. (PMID: 14747140)
      Annu Rev Genet. 2006;40:363-83. (PMID: 16895466)
      J Mol Biol. 2009 Jul 3;390(1):45-55. (PMID: 19445949)
      PLoS One. 2019 Aug 6;14(8):e0215882. (PMID: 31386669)
      J Gen Microbiol. 1993 Oct;139(10):2439-44. (PMID: 7902862)
      Mol Biochem Parasitol. 2010 Jun;171(2):81-8. (PMID: 20226217)
      Front Genet. 2017 Jun 22;8:86. (PMID: 28690636)
      Virus Evol. 2015 May 26;1(1):vev003. (PMID: 27774277)
      Mol Microbiol. 2014 Oct;94(2):353-66. (PMID: 25145341)
      Front Microbiol. 2017 Sep 07;8:1716. (PMID: 28936205)
      Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6236-40. (PMID: 8692798)
      J Immunol. 2000 Feb 15;164(4):2037-45. (PMID: 10657656)
      J Bacteriol. 1983 Aug;155(2):930-2. (PMID: 6409888)
      Nucleic Acids Res. 2005 Jul 11;33(12):3799-811. (PMID: 16009812)
      Cell. 1997 Apr 18;89(2):195-204. (PMID: 9108475)
      Nucleic Acids Res. 2014 Jun;42(11):7113-31. (PMID: 24799432)
      Nucleic Acids Res. 2005 Dec 02;33(21):6906-19. (PMID: 16326865)
      Infect Immun. 1994 Jan;62(1):91-8. (PMID: 8262654)
      Mol Cell. 2017 Jul 20;67(2):252-265.e6. (PMID: 28689661)
      Genetics. 2014 Nov;198(3):795-835. (PMID: 25381364)
      Mol Biochem Parasitol. 1992 May;52(1):123-6. (PMID: 1625699)
      Annu Rev Genet. 2004;38:233-71. (PMID: 15568977)
      Mol Ecol. 2016 Jan;25(1):185-202. (PMID: 26137993)
      Nature. 2009 May 14;459(7244):278-81. (PMID: 19369939)
      J Parasitol. 1973 Aug;59(4):735-6. (PMID: 4198651)
      Cell. 2013 Mar 14;152(6):1344-54. (PMID: 23498941)
      PLoS One. 2012;7(2):e31565. (PMID: 22347496)
      BMC Genomics. 2013 Nov 06;14:763. (PMID: 24195453)
      Nucleic Acids Res. 2014 Jan;42(1):370-9. (PMID: 24089143)
      Mol Cell. 2000 Jan;5(1):153-62. (PMID: 10678177)
      Int J Parasitol. 2012 Feb;42(2):131-8. (PMID: 22138017)
      Antimicrob Agents Chemother. 2004 May;48(5):1803-6. (PMID: 15105138)
      Nature. 2006 Aug 3;442(7102):590-3. (PMID: 16862129)
      Nucleic Acids Res. 1992 Jun 11;20(11):2902. (PMID: 1614888)
      Nat Methods. 2013 Jan;10(1):57-9. (PMID: 23202435)
      Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11129-34. (PMID: 15256597)
      Mol Biochem Parasitol. 1993 Jul;60(1):121-32. (PMID: 8366886)
      Nature. 1998 May 7;393(6680):91-4. (PMID: 9590697)
      Microbiol Mol Biol Rev. 1997 Sep;61(3):281-93. (PMID: 9293182)
      Int J Parasitol. 1972 Jun;2(2):209-15. (PMID: 4652608)
      Eukaryot Cell. 2011 Sep;10(9):1193-206. (PMID: 21531875)
      Science. 1980 Mar 14;207(4436):1218-20. (PMID: 7355284)
      Genes Dev. 1999 Nov 1;13(21):2875-88. (PMID: 10557214)
      Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6492-6. (PMID: 1631148)
      Onderstepoort J Vet Res. 1986 Sep;53(3):179-80. (PMID: 3763171)
      J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
      PLoS Biol. 2019 May 13;17(5):e3000271. (PMID: 31083650)
      Nat Biotechnol. 2019 Aug;37(8):852-857. (PMID: 31341288)
      Cold Spring Harb Perspect Biol. 2013 May 01;5(5):a012815. (PMID: 23637285)
    • Accession Number:
      0 (Antigens, Protozoan)
      0 (DNA, Protozoan)
      0 (Protozoan Proteins)
      EC 2.7.7.- (Rad51 Recombinase)
    • Publication Date:
      Date Created: 20200901 Date Completed: 20201005 Latest Revision: 20201005
    • Publication Date:
      20240105
    • Accession Number:
      PMC7485966
    • Accession Number:
      10.1371/journal.ppat.1008772
    • Accession Number:
      32866214