Differential effects of dexamethasone on arterial stiffness, myocardial remodeling and blood pressure between normotensive and spontaneously hypertensive rats.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley And Sons Country of Publication: England NLM ID: 8109495 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1263 (Electronic) Linking ISSN: 0260437X NLM ISO Abbreviation: J Appl Toxicol Subsets: MEDLINE
    • Publication Information:
      Publication: : Chichester : John Wiley And Sons
      Original Publication: [Philadelphia, Pa. : Heyden & Son, c1981-
    • Subject Terms:
    • Abstract:
      Dexamethasone (DEX)-induced hypertension is observed in normotensive rats, but little is known about the effects of DEX on spontaneously hypertensive animals (SHR). This study aimed to evaluate the effects of DEX on hemodynamics, cardiac hypertrophy and arterial stiffness in normotensive and hypertensive rats. Wistar rats and SHR were treated with DEX (50 μg/kg s.c., 14 d) or saline. Pulse wave velocity (PWV), echocardiographic parameters, blood pressure (BP), autonomic modulation and histological analyses of heart and thoracic aorta were performed. SHR had higher BP compared with Wistar, associated with autonomic unbalance to the heart. Echocardiographic changes in SHR (vs. Wistar) were suggestive of cardiac remodeling: higher relative wall thickness (RWT, +28%) and left ventricle mass index (LVMI, +26%) and lower left ventricle systolic diameter (LVSD, -19%) and LV diastolic diameter (LVDD, -10%), with slightly systolic dysfunction and preserved diastolic dysfunction. Also, SHR had lower myocardial capillary density and similar collagen deposition area. PWV was higher in SHR due to higher aortic collagen deposition. DEX-treated Wistar rats presented higher BP (~23%) and autonomic unbalance. DEX did not change cardiac structure in Wistar, but PWV (+21%) and aortic collagen deposition area (+21%) were higher compared with control. On the other side, DEX did not change BP or autonomic balance to the heart in SHR, but reduced RWT and LV collagen deposition area (-12% vs. SHR CT ). In conclusion, the results suggest a differential effect of dexamethasone on arterial stiffness, myocardial remodeling and blood pressure between normotensive and spontaneously hypertensive rats.
      (© 2021 John Wiley & Sons, Ltd.)
    • References:
      Aguilar, D., Strom, J., & Chen, Q. M. (2014). Glucocorticoid induced leucine zipper inhibits apoptosis of cardiomyocytes by doxorubicin. Toxicology and Applied Pharmacology, 276(1), 55-62. https://doi.org/10.1016/j.taap.2014.01.013.
      Anwar, M. A., Saleh, A. I., Al Olabi, R., Al Shehabi, T. S., & Eid, A. H. (2016). Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascular Pharmacology, 82, 41-50. https://doi.org/10.1016/j.vph.2016.02.002.
      Arthur-Ataam, J., Bideaux, P., Charrabi, A., Sicard, P., Fromy, B., Liu, K., Eddahibi, S., Pasqualin, C., Jouy, N., Richard, S., & Virsolvy, A. (2019). Dietary supplementation with silicon-enriched spirulina improves arterial remodeling and function in hypertensive rats. Nutrients, 11(11). https://doi.org/10.3390/nu11112574.
      Barel, M., Perez, O. A., Giozzet, V. A., Rafacho, A., Bosqueiro, J. R., & do Amaral, S. L. (2010). Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment. European Journal of Applied Physiology, 108(5), 999-1007. https://doi.org/10.1007/s00421-009-1272-6.
      Bernardo, B. C., Weeks, K. L., Pretorius, L., & McMullen, J. R. (2010). Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacology & Therapeutics, 128(1), 191-227. https://doi.org/10.1016/j.pharmthera.2010.04.005.
      Bertagnolli, M., Campos, C., Schenkel, P. C., de Oliveira, V. L., De Angelis, K., Bello-Klein, A., … Irigoyen, M. C. (2006). Baroreflex sensitivity improvement is associated with decreased oxidative stress in trained spontaneously hypertensive rat. Journal of Hypertension, 24(12), 2437-2443. https://doi.org/10.1097/01.hjh.0000251905.08547.17.
      Brotman, D. J., Girod, J. P., Garcia, M. J., Patel, J. V., Gupta, M., Posch, A., Saunders, S., Lip, G. Y. H., Worley, S., & Reddy, S. (2005). Effects of short-term glucocorticoids on cardiovascular biomarkers. The Journal of Clinical Endocrinology and Metabolism, 90(6), 3202-3208. https://doi.org/10.1210/jc.2004-2379.
      Brown, I. A. M., Diederich, L., Good, M. E., DeLalio, L. J., Murphy, S. A., Cortese-Krott, M. M., Hall, J. L., le, T. H., & Isakson, B. E. (2018). Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), 1969-1985. https://doi.org/10.1161/ATVBAHA.118.311229.
      Bunbupha, S., Prachaney, P., Kukongviriyapan, U., Kukongviriyapan, V., Welbat, J. U., & Pakdeechote, P. (2015). Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension. Clinical and Experimental Pharmacology & Physiology, 42(11), 1189-1197. https://doi.org/10.1111/1440-1681.12472.
      Celik, G., Yilmaz, S., Kebapcilar, L., & Gundogdu, A. (2017). Central arterial characteristics of gout patients with chronic kidney diseases. International Journal of Rheumatic Diseases, 20(5), 628-638. https://doi.org/10.1111/1756-185X.12689.
      Chamiot Clerc, P., Renaud, J. F., Blacher, J., Legrand, M., Samuel, J. L., Levy, B. I., … Safar, M. E. (1999). Collagen I and III and mechanical properties of conduit arteries in rats with genetic hypertension. Journal of Vascular Research, 36(2), 139-146. https://doi.org/10.1159/000025637.
      Chen, Q. M., Alexander, D., Sun, H., Xie, L., Lin, Y., Terrand, J., Morrissy, S., & Purdom, S. (2005). Corticosteroids inhibit cell death induced by doxorubicin in cardiomyocytes: Induction of antiapoptosis, antioxidant, and detoxification genes. Molecular Pharmacology, 67(6), 1861-1873. https://doi.org/10.1124/mol.104.003814.
      Cingolani, O. H., Yang, X. P., Cavasin, M. A., & Carretero, O. A. (2003). Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats. Hypertension, 41(2), 249-254. https://doi.org/10.1161/01.hyp.0000052832.96564.0b.
      Cohn, J. N., Ferrari, R., & Sharpe, N. (2000). Cardiac remodeling-Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. Journal of the American College of Cardiology, 35(3), 569-582. https://doi.org/10.1016/s0735-1097(99)00630-0.
      Constantino, P. B., Dionisio, T. J., Duchatsch, F., Herrera, N. A., Duarte, J. O., Santos, C. F., … Amaral, S. L. (2017). Exercise attenuates dexamethasone-induced hypertension through an improvement of baroreflex activity independently of the renin-angiotensin system. Steroids, 128, 147-154. https://doi.org/10.1016/j.steroids.2017.10.007.
      Cury, S. S., Freire, P. P., Martinucci, B., Dos Santos, V. C., de Oliveira, G., Ferretti, R., … Carvalho, R. F. (2018). Fractal dimension analysis reveals skeletal muscle disorganization in mdx mice. Biochemical and Biophysical Research Communications, 503(1), 109-115. https://doi.org/10.1016/j.bbrc.2018.05.189.
      De, P., Roy, S. G., Kar, D., & Bandyopadhyay, A. (2011). Excess of glucocorticoid induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes. The Journal of Endocrinology, 209(1), 105-114. https://doi.org/10.1530/JOE-10-0431.
      de Salvi Guimaraes, F., de Moraes, W. M., Bozi, L. H., Souza, P. R., Antonio, E. L., Bocalini, D. S., … Medeiros, A. (2017). Dexamethasone-induced cardiac deterioration is associated with both calcium handling abnormalities and calcineurin signaling pathway activation. Molecular and Cellular Biochemistry, 424(1-2), 87-98. https://doi.org/10.1007/s11010-016-2846-3.
      Di Chiara, T., Scaglione, A., Corrao, S., Argano, C., Pinto, A., & Scaglione, R. (2017). Education and hypertension: Impact on global cardiovascular risk. Acta Cardiologica, 72(5), 507-513. https://doi.org/10.1080/00015385.2017.1297626.
      Dionisio, T. J., Louzada, J. C., Viscelli, B. A., Dionisio, E. J., Martuscelli, A. M., Barel, M., … Amaral, S. L. (2014). Aerobic training prevents dexamethasone-induced peripheral insulin resistance. Hormone and Metabolic Research, 46(7), 484-489. https://doi.org/10.1055/s-0034-1370990.
      Dodic, M., Peers, A., Coghlan, J. P., May, C. N., Lumbers, E., Yu, Z., & Wintour, E. M. (1999). Altered cardiovascular haemodynamics and baroreceptor-heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clinical Science (London, England), 97(1), 103-109.Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10369801.
      Dodic, M., Samuel, C., Moritz, K., Wintour, E. M., Morgan, J., Grigg, L., & Wong, J. (2001). Impaired cardiac functional reserve and left ventricular hypertrophy in adult sheep after prenatal dexamethasone exposure. Circulation Research, 89(7), 623-629. https://doi.org/10.1161/hh1901.097086.
      Duchatsch, F., Constantino, P. B., Herrera, N. A., Fabricio, M. F., Tardelli, L. P., Martuscelli, A. M., … Amaral, S. L. (2018). Short-term exposure to dexamethasone promotes autonomic imbalance to the heart before hypertension. Journal of the American Society of Hypertension, 12(8), 605-613. https://doi.org/10.1016/j.jash.2018.06.004.
      Duchatsch, F., Tardelli, L. P., Herrera, N. A., Ruiz, T. F. R., Vicentini, C. A., Okoshi, K., Santos, C. F., & Amaral, S. L. (2020). Dexamethasone and training-induced cardiac remodeling improve cardiac function and arterial pressure in spontaneously hypertensive rats. Journal of Cardiovascular Pharmacology and Therapeutics. https://doi.org/10.1177/1074248420953271.
      Dumor, K., Shoemaker-Moyle, M., Nistala, R., & Whaley-Connell, A. (2018). Arterial stiffness in hypertension: An update. Current Hypertension Reports, 20(8), 72. https://doi.org/10.1007/s11906-018-0867-x.
      DuPont, J. J., Kenney, R. M., Patel, A. R., & Jaffe, I. Z. (2019). Sex differences in mechanisms of arterial stiffness. British Journal of Pharmacology, 176(21), 4208-4225. https://doi.org/10.1111/bph.14624.
      Durrant, L. M., Khorram, O., Buchholz, J. N., & Pearce, W. J. (2014). Maternal food restriction modulates cerebrovascular structure and contractility in adult rat offspring: Effects of metyrapone. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(6), R401-R410. https://doi.org/10.1152/ajpregu.00436.2013.
      Ecobici, M., & Voiculescu, M. (2017). Importance of arterial stiffness in predicting cardiovascular events. Romanian Journal of Internal Medicine, 55(1), 8-13. https://doi.org/10.1515/rjim-2016-0043.
      Fabricio, M. F., Jordao, M. T., Miotto, D. S., Ruiz, T. F. R., Vicentini, C. A., Lacchini, S., … Amaral, S. L. (2020). Standardization of a new non-invasive device for assessment of arterial stiffness in rats: Correlation with age-related arteries' structure. MethodsX, 7, 100901. https://doi.org/10.1016/j.mex.2020.100901.
      Fletcher, A. J., Gardner, D. S., Edwards, C. M., Fowden, A. L., & Giussani, D. A. (2003). Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. The Journal of Physiology, 549(Pt 1), 271-287. https://doi.org/10.1113/jphysiol.2002.036418.
      Forhead, A. J., Gillespie, C. E., & Fowden, A. L. (2000). Role of cortisol in the ontogenic control of pulmonary and renal angiotensin-converting enzyme in fetal sheep near term. The Journal of Physiology, 526(Pt 2), 409-416. https://doi.org/10.1111/j.1469-7793.2000.00409.x.
      Forhead, A. J., Jellyman, J. K., De Blasio, M. J., Johnson, E., Giussani, D. A., Broughton Pipkin, F., & Fowden, A. L. (2015). Maternal dexamethasone treatment alters tissue and circulating components of the renin-angiotensin system in the pregnant ewe and fetus. Endocrinology, 156(8), 3038-3046. https://doi.org/10.1210/en.2015-1197.
      Grassi, G., & Ram, V. S. (2016). Evidence for a critical role of the sympathetic nervous system in hypertension. Journal of the American Society of Hypertension, 10(5), 457-466. https://doi.org/10.1016/j.jash.2016.02.015.
      Hagg, U., Andersson, I., Naylor, A. S., Gronros, J., Jonsdottir, I. H., Bergstrom, G., & Gan, L. M. (2004). Voluntary physical exercise-induced vascular effects in spontaneously hypertensive rats. Clinical Science (London, England), 107(6), 571-581. https://doi.org/10.1042/CS20040171.
      Han, J. C., Barrett, C. J., Taberner, A. J., & Loiselle, D. S. (2015). Does reduced myocardial efficiency in systemic hypertensive-hypertrophy correlate with increased left-ventricular wall thickness? Hypertension Research, 38(8), 530-538. https://doi.org/10.1038/hr.2015.37.
      Hays, T. T., Ma, B., Zhou, N., Stoll, S., Pearce, W. J., & Qiu, H. (2018). Vascular smooth muscle cells direct extracellular dysregulation in aortic stiffening of hypertensive rats. Aging Cell, 17(3), e12748. https://doi.org/10.1111/acel.12748.
      Hernandez, A. M., Huber, J. S., Murphy, S. T., Janabi, M., Zeng, G. L., Brennan, K. M., O'Neil, J. P., Seo, Y., & Gullberg, G. T. (2013). Longitudinal evaluation of left ventricular substrate metabolism, perfusion, and dysfunction in the spontaneously hypertensive rat model of hypertrophy using small-animal PET/CT imaging. Journal of Nuclear Medicine, 54(11), 1938-1945. https://doi.org/10.2967/jnumed.113.120105.
      Herrera, N. A., Duchatsch, F., Tardelli, L. P., Dionisio, T. J., Santos, C. F., & Amaral, S. L. (2020). Dexamethasone does not inhibit treadmill training-induced angiogenesis in myocardium: Role of MicroRNA-126 pathway. Journal of Cardiovascular Pharmacology, 76(6), 708-714. https://doi.org/10.1097/FJC.0000000000000924.
      Herrera, N. A., Duchatsch, F., Tardelli, L. P., Dionisio, T. J., Shinohara, A. L., Santos, C. F., & Amaral, S. L. (2020). MicroRNA-126 upregulation, induced by training, plays a role in controlling microcirculation in dexamethasone treated rats. Molecular and Cellular Endocrinology, 505, 110732. https://doi.org/10.1016/j.mce.2020.110732.
      Herrera, N. A., Jesus, I., Dionisio, E. J., Dionisio, T. J., Santos, C. F., & Amaral, S. L. (2017). Exercise training prevents dexamethasone-induced rarefaction. Journal of Cardiovascular Pharmacology, 70(3), 194-201. https://doi.org/10.1097/FJC.0000000000000505.
      Herrera, N. A., Jesus, I., Shinohara, A. L., Dionisio, T. J., Santos, C. F., & Amaral, S. L. (2016). Exercise training attenuates dexamethasone-induced hypertension by improving autonomic balance to the heart, sympathetic vascular modulation and skeletal muscle microcirculation. Journal of Hypertension, 34(10), 1967-1976. https://doi.org/10.1097/HJH.0000000000001032.
      Hoshino, J., Sakamaki, T., Nakamura, T., Kobayashi, M., Kato, M., Sakamoto, H., Kurashina, T., Yagi, A., Sato, K., & Ono, Z. (1994). Exaggerated vascular response due to endothelial dysfunction and role of the renin-angiotensin system at early stage of renal hypertension in rats. Circulation Research, 74(1), 130-138. https://doi.org/10.1161/01.res.74.1.130.
      Jesus, I., Herrera, N. A., Andreo, J. C., Santos, C. F., & Amaral, S. L. (2020). Training counteracts DEX-induced microvascular rarefaction by improving the balance between apoptotic and angiogenic proteins. Steroids, 156, 108573. https://doi.org/10.1016/j.steroids.2019.108573.
      Johnson, A. K., & Xue, B. (2018). Central nervous system neuroplasticity and the sensitization of hypertension. Nature Reviews. Nephrology, 14(12), 750-766. https://doi.org/10.1038/s41581-018-0068-5.
      Jordao, M. T., Ladd, F. V., Coppi, A. A., Chopard, R. P., & Michelini, L. C. (2011). Exercise training restores hypertension-induced changes in the elastic tissue of the thoracic aorta. Journal of Vascular Research, 48(6), 513-524. https://doi.org/10.1159/000329590.
      Joukar, S., Ebrahimi, S., Khazaei, M., Bashiri, A., Shakibi, M. R., Naderi, V., Shahouzehi, B., & Alasvand, M. (2017). Co-administration of walnut (Juglans regia) prevents systemic hypertension induced by long-term use of dexamethasone: A promising strategy for steroid consumers. Pharmaceutical Biology, 55(1), 184-189. https://doi.org/10.1080/13880209.2016.1233570.
      Kaess, B. M., Rong, J., Larson, M. G., Hamburg, N. M., Vita, J. A., Levy, D., Benjamin, E. J., Vasan, R. S., & Mitchell, G. F. (2012). Aortic stiffness, blood pressure progression, and incident hypertension. JAMA, 308(9), 875-881. https://doi.org/10.1001/2012.jama.10503.
      Kaplan, N. M. (1995). Guidelines for the treatment of hypertension: An American view. Fifth joint National Committee. Journal of Hypertension. Supplement, 13(2), S113-S117. https://doi.org/10.1097/00004872-199508001-00019.
      Kelly, B. A., Lewandowski, A. J., Worton, S. A., Davis, E. F., Lazdam, M., Francis, J., Neubauer, S., Lucas, A., Singhal, A., & Leeson, P. (2012). Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics, 129(5), e1282-e1290. https://doi.org/10.1542/peds.2011-3175.
      Kim, J. Y., Park, J. B., Kim, D. S., Kim, K. S., Jeong, J. W., Park, J. C., … investigators, K. (2014). Gender difference in arterial stiffness in a multicenter cross-sectional study: The Korean arterial aging study (KAAS). Pulse (Basel), 2(1-4), 11-17. https://doi.org/10.1159/000365267.
      Krug, A. L., Macedo, A. G., Zago, A. S., Rush, J. W., Santos, C. F., & Amaral, S. L. (2016). High-intensity resistance training attenuates dexamethasone-induced muscle atrophy. Muscle & Nerve, 53(5), 779-788. https://doi.org/10.1002/mus.24906.
      Kumar, V. H., Im, N. N., Huilgol, S. V., Yendigeri, S. M., & K, N., & Ch, R. (2015). Dose dependent hepatic and endothelial changes in rats treated with dexamethasone. Journal of Clinical and Diagnostic Research, 9(5), FF08-FF10. https://doi.org/10.7860/JCDR/2015/12810.5930.
      Lacolley, P., Li, Z., Challande, P., & Regnault, V. (2017). SRF/myocardin: A novel molecular axis regulating vascular smooth muscle cell stiffening in hypertension. Cardiovascular Research, 113(2), 120-122. https://doi.org/10.1093/cvr/cvw253.
      Lacolley, P., Regnault, V., Segers, P., & Laurent, S. (2017). Vascular smooth muscle cells and arterial stiffening: Relevance in development, aging, and disease. Physiological Reviews, 97(4), 1555-1617. https://doi.org/10.1152/physrev.00003.2017.
      Li, J., Kemp, B. A., Howell, N. L., Massey, J., Minczuk, K., Huang, Q., … Kundu, B. K. (2019). Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. Journal of the American Heart Association, 8(4), e010926. https://doi.org/10.1161/JAHA.118.010926.
      Li, X. S., He, H., Zhao, Y. L., Li, Y., Liu, Z. P., Liu, T., Zhang, Y., Yu, K. J., & Wang, R. T. (2016). Bone mineral density is negatively associated with arterial stiffness in men with hypertension. Journal of Clinical Hypertension (Greenwich, Conn.), 18(11), 1106-1111. https://doi.org/10.1111/jch.12848.
      Lietman, P. S., & Saral, R. (1985). Treatment and prevention of virus infections in immunosuppressed patients. Antiviral Research, 1, 241-250. https://doi.org/10.1016/s0166-3542(85)80034-6.
      Lindesay, G., Bezie, Y., Ragonnet, C., Duchatelle, V., Dharmasena, C., Villeneuve, N., & Vayssettes-Courchay, C. (2018). Differential stiffening between the abdominal and thoracic aorta: Effect of salt loading in stroke-prone hypertensive rats. Journal of Vascular Research, 55(3), 144-158. https://doi.org/10.1159/000488877.
      Lindesay, G., Ragonnet, C., Chimenti, S., Villeneuve, N., & Vayssettes-Courchay, C. (2016). Age and hypertension strongly induce aortic stiffening in rats at basal and matched blood pressure levels. Physiological Reports, 4(10). https://doi.org/10.14814/phy2.12805.
      Macedo, A. G., Krug, A. L., Herrera, N. A., Zago, A. S., Rush, J. W., & Amaral, S. L. (2014). Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. The Journal of Steroid Biochemistry and Molecular Biology, 143, 357-364. https://doi.org/10.1016/j.jsbmb.2014.05.010.
      Macedo, A. G., Krug, A. L., Souza, L. M., Martuscelli, A. M., Constantino, P. B., Zago, A. S., … Amaral, S. L. (2016). Time-course changes of catabolic proteins following muscle atrophy induced by dexamethasone. Steroids, 107, 30-36. https://doi.org/10.1016/j.steroids.2015.12.016.
      Macedo, F. N., Souza, D. S., Araujo, J., Dantas, C. O., Miguel-Dos-Santos, R., Silva-Filha, E., … Mesquita, T. R. R. (2020). NOX-dependent reactive oxygen species production underlies arrhythmias susceptibility in dexamethasone-treated rats. Free Radical Biology & Medicine, 152, 1-7. https://doi.org/10.1016/j.freeradbiomed.2020.03.005.
      Martinez-Martinez, E., Rodriguez, C., Galan, M., Miana, M., Jurado-Lopez, R., Bartolome, M. V., … Cachofeiro, V. (2016). The lysyl oxidase inhibitor (beta-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats. Journal of Molecular and Cellular Cardiology, 92, 96-104. https://doi.org/10.1016/j.yjmcc.2016.01.012.
      Masson, G. S., Nair, A. R., Silva Soares, P. P., Michelini, L. C., & Francis, J. (2015). Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. American Journal of Physiology. Heart and Circulatory Physiology, 309(7), H1115-H1122. https://doi.org/10.1152/ajpheart.00349.2015.
      Miao, Y., Zhang, Y., Lim, P. S., Kanjanapan, Y., Mori, T. A., Croft, K. D., Earl, J., Lee, S. Y., McKenzie, K., Hu, L., & Whitworth, J. A. (2007). Folic acid prevents and partially reverses glucocorticoid-induced hypertension in the rat. American Journal of Hypertension, 20(3), 304-310. https://doi.org/10.1016/j.amjhyper.2006.08.007.
      Mondo, C. K., Yang, W. S., Zhang, N., & Huang, T. G. (2006). Anti-oxidant effects of atorvastatin in dexamethasone-induced hypertension in the rat. Clinical and Experimental Pharmacology & Physiology, 33(11), 1029-1034. https://doi.org/10.1111/j.1440-1681.2006.04482.x.
      Morgan, E. E., Casabianca, A. B., Khouri, S. J., & Kalinoski, A. L. (2014). In vivo assessment of arterial stiffness in the isoflurane anesthetized spontaneously hypertensive rat. Cardiovascular Ultrasound, 12, 37. https://doi.org/10.1186/1476-7120-12-37.
      Muangmingsuk, S., Ingram, P., Gupta, M. P., Arcilla, R. A., & Gupta, M. (2000). Dexamethasone induced cardiac hypertrophy in newborn rats is accompanied by changes in myosin heavy chain phenotype and gene transcription. Molecular and Cellular Biochemistry, 209(1-2), 165-173. https://doi.org/10.1023/a:1007128300430.
      Mulvany, M. J. (1998). Effects of angiotensin-converting enzyme inhibition on vascular remodeling of resistance vessels in hypertensive patients. Metabolism, 47(12 Suppl 1), 20-23. https://doi.org/10.1016/s0026-0495(98)90366-3.
      Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543-1553. https://doi.org/10.1161/01.RES.0000130526.20854.fa.
      Ohyama, Y., Ambale-Venkatesh, B., Noda, C., Chugh, A. R., Teixido-Tura, G., Kim, J. Y., Donekal, S., Yoneyama, K., Gjesdal, O., Redheuil, A., Liu, C. Y., Nakamura, T., Wu, C. O., Hundley, W. G., Bluemke, D. A., & Lima, J. A. (2016). Association of aortic stiffness with left ventricular remodeling and reduced left ventricular function measured by magnetic resonance imaging: The multi-ethnic study of atherosclerosis. Circulation. Cardiovascular Imaging, 9(7). https://doi.org/10.1161/CIRCIMAGING.115.004426.
      Ong, S. L., Vickers, J. J., Zhang, Y., McKenzie, K. U., Walsh, C. E., & Whitworth, J. A. (2007). Role of xanthine oxidase in dexamethasone-induced hypertension in rats. Clinical and Experimental Pharmacology & Physiology, 34(5-6), 517-519. https://doi.org/10.1111/j.1440-1681.2007.04605.x.
      Ong, S. L., Vohra, H., Zhang, Y., Sutton, M., & Whitworth, J. A. (2013). The effect of alpha-lipoic acid on mitochondrial superoxide and glucocorticoid-induced hypertension. Oxidative Medicine and Cellular Longevity, 2013, 517045-9. https://doi.org/10.1155/2013/517045.
      Ong, S. L., Zhang, Y., & Whitworth, J. A. (2008). Reactive oxygen species and glucocorticoid-induced hypertension. Clinical and Experimental Pharmacology & Physiology, 35(4), 477-482. https://doi.org/10.1111/j.1440-1681.2008.04900.x.
      Pagan, L. U., Damatto, R. L., Cezar, M. D., Lima, A. R., Bonomo, C., Campos, D. H., … Okoshi, K. (2015). Long-term low intensity physical exercise attenuates heart failure development in aging spontaneously hypertensive rats. Cellular Physiology and Biochemistry, 36(1), 61-74. https://doi.org/10.1159/000374053.
      Pagan, L. U., Damatto, R. L., Gomes, M. J., Lima, A. R. R., Cezar, M. D. M., Damatto, F. C., Reyes, D. R. A., Caldonazo, T. M. M., Polegato, B. F., Okoshi, M. P., & Okoshi, K. (2019). Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. Journal of Cellular and Molecular Medicine, 23(9), 6504-6507. https://doi.org/10.1111/jcmm.14530.
      Rao, M. K., Xu, A., & Narayanan, N. (2001). Glucocorticoid modulation of protein phosphorylation and sarcoplasmic reticulum function in rat myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 281(1), H325-H333. https://doi.org/10.1152/ajpheart.2001.281.1.H325.
      Ren, R., Oakley, R. H., Cruz-Topete, D., & Cidlowski, J. A. (2012). Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology, 153(11), 5346-5360. https://doi.org/10.1210/en.2012-1563.
      Rode, M., Teren, A., Wirkner, K., Horn, K., Kirsten, H., Loeffler, M., Scholz, M., & Pott, J. (2020). Genome-wide association analysis of pulse wave velocity traits provide new insights into the causal relationship between arterial stiffness and blood pressure. PLoS One, 15(8), e0237237. https://doi.org/10.1371/journal.pone.0237237.
      Rossoni, L. V., Oliveira, R. A., Caffaro, R. R., Miana, M., Sanz-Rosa, D., Koike, M. K., … Cachofeiro, V. (2011). Cardiac benefits of exercise training in aging spontaneously hypertensive rats. Journal of Hypertension, 29(12), 2349-2358. https://doi.org/10.1097/HJH.0b013e32834d2532.
      Safar, M. E. (2018). Arterial stiffness as a risk factor for clinical hypertension. Nature Reviews. Cardiology, 15(2), 97-105. https://doi.org/10.1038/nrcardio.2017.155.
      Savitha, M. N., Suvilesh, K. N., Siddesha, J. M., Milan Gowda, M. D., Choudhury, M., Velmurugan, D., Umashankar, M., & Vishwanath, B. S. (2020). Combinatorial inhibition of angiotensin converting enzyme, neutral endopeptidase and aminopeptidase N by N-methylated peptides alleviates blood pressure and fibrosis in rat model of dexamethasone-induced hypertension. Peptides, 123, 170180. https://doi.org/10.1016/j.peptides.2019.170180.
      Scandale, G., Dimitrov, G., Recchia, M., Carzaniga, G., Perilli, E., Carotta, M., & Catalano, M. (2020). Arterial stiffness and 5-year mortality in patients with peripheral arterial disease. Journal of Human Hypertension, 34(7), 505-511. https://doi.org/10.1038/s41371-019-0254-3.
      Schafer, S. C., Wallerath, T., Closs, E. I., Schmidt, C., Schwarz, P. M., Forstermann, U., & Lehr, H. A. (2005). Dexamethasone suppresses eNOS and CAT-1 and induces oxidative stress in mouse resistance arterioles. American Journal of Physiology. Heart and Circulatory Physiology, 288(1), H436-H444. https://doi.org/10.1152/ajpheart.00587.2004.
      Segar, J. L., Roghair, R. D., Segar, E. M., Bailey, M. C., Scholz, T. D., & Lamb, F. S. (2006). Early gestation dexamethasone alters baroreflex and vascular responses in newborn lambs before hypertension. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291(2), R481-R488. https://doi.org/10.1152/ajpregu.00677.2005.
      Sehgel, N. L., Vatner, S. F., & Meininger, G. A. (2015). "smooth muscle cell stiffness syndrome"-revisiting the structural basis of arterial stiffness. Frontiers in Physiology, 6, 335. https://doi.org/10.3389/fphys.2015.00335.
      Silva, S. D. Jr., Jara, Z. P., Peres, R., Lima, L. S., Scavone, C., Montezano, A. C., … Michelini, L. C. (2017). Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS One, 12(12), e0189535. https://doi.org/10.1371/journal.pone.0189535.
      Stern, R., Tattersall, M. C., Gepner, A. D., Korcarz, C. E., Kaufman, J., Colangelo, L. A., Liu, K., & Stein, J. H. (2015). Sex differences in predictors of longitudinal changes in carotid artery stiffness: The multi-ethnic study of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(2), 478-484. https://doi.org/10.1161/atvbaha.114.304870.
      Suzuki, H., Handa, M., Kondo, K., & Saruta, T. (1982). Role of renin-angiotensin system in glucocorticoid hypertension in rats. The American Journal of Physiology, 243(1), E48-E51. https://doi.org/10.1152/ajpendo.1982.243.1.E48.
      Tanaka, H., & Safar, M. E. (2005). Influence of lifestyle modification on arterial stiffness and wave reflections. American Journal of Hypertension, 18(1), 137-144. https://doi.org/10.1016/j.amjhyper.2004.07.008.
      Tham, Y. K., Bernardo, B. C., Ooi, J. Y., Weeks, K. L., & McMullen, J. R. (2015). Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Archives of Toxicology, 89(9), 1401-1438. https://doi.org/10.1007/s00204-015-1477-x.
      Wallerath, T., Godecke, A., Molojavyi, A., Li, H., Schrader, J., & Forstermann, U. (2004). Dexamethasone lacks effect on blood pressure in mice with a disrupted endothelial NO synthase gene. Nitric Oxide, 10(1), 36-41. https://doi.org/10.1016/j.niox.2004.01.008.
      Wani-Parekh, P., Blanco-Garcia, C., Mendez, M., & Mukherjee, D. (2017). Guide of hypertensive crisis pharmacotherapy. Cardiovascular & Hematological Disorders Drug Targets, 17(1), 52-57. https://doi.org/10.2174/1871529x16666161220142020.
      Whitworth, J. A., Schyvens, C. G., Zhang, Y., Andrews, M. C., Mangos, G. J., & Kelly, J. J. (2002). The nitric oxide system in glucocorticoid-induced hypertension. Journal of Hypertension, 20(6), 1035-1043. https://doi.org/10.1097/00004872-200206000-00003.
      Williamson, P. M., Ong, S. L., Whitworth, J. A., & Kelly, J. J. (2015). The role of sustained release isosorbide mononitrate on corticosteroid-induced hypertension in healthy human subjects. Journal of Human Hypertension, 29(12), 737-743. https://doi.org/10.1038/jhh.2015.14.
      Wu, J., Saleh, M. A., Kirabo, A., Itani, H. A., Montaniel, K. R., Xiao, L., … Harrison, D. G. (2016). Immune activation caused by vascular oxidation promotes fibrosis and hypertension. The Journal of Clinical Investigation, 126(1), 50-67. https://doi.org/10.1172/JCI80761.
      Xia, Q. G., Na, T., Guo, Y. M., Bi, Y. T., Zhang, H. Y., & Dai, D. Z. (2007). Improvement of chronic heart failure by dexamethasone is not associated with downregulation of leptin in rats. Acta Pharmacologica Sinica, 28(2), 202-210. https://doi.org/10.1111/j.1745-7254.2007.00503.x.
      Xie, Z., Wang, S., Liang, Z., Zeng, L., Lai, R., Ye, Z., & Liao, P. (2019). Impacts of a specific cyclooxygenase-2 inhibitor on pressure overload-induced myocardial hypertrophy in rats. The Heart Surgery Forum, 22(6), E432-E437. https://doi.org/10.1532/hsf.1971.
      Xu, B., Strom, J., & Chen, Q. M. (2011). Dexamethasone induces transcriptional activation of Bcl-xL gene and inhibits cardiac injury by myocardial ischemia. European Journal of Pharmacology, 668(1-2), 194-200. https://doi.org/10.1016/j.ejphar.2011.06.019.
      Yadav, A., Jahan, A., Yadav, T. P., Sachdev, N., Chitkara, A., & Asare, R. (2013). Effect of glucocorticoids on serum lipid profile and endothelial function and arterial wall mechanics. Indian Journal of Pediatrics, 80(12), 1007-1014. https://doi.org/10.1007/s12098-013-1035-6.
      Yao, L., Chen, G. P., Lu, X., Zheng, L. R., Mou, Y., & Hu, S. J. (2009). Effects of atorvastatin on calcium-regulating proteins: A possible mechanism to repair cardiac dysfunction in spontaneously hypertensive rats. Basic Research in Cardiology, 104(3), 258-268. https://doi.org/10.1007/s00395-008-0751-y.
      You, J., Wu, J., Zhang, Q., Ye, Y., Wang, S., Huang, J., Liu, H., Wang, X., Zhang, W., Bu, L., Li, J., Lin, L., Ge, J., & Zou, Y. (2018). Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. American Journal of Physiology. Heart and Circulatory Physiology, 314(3), H552-H562. https://doi.org/10.1152/ajpheart.00212.2017.
      Zalba, G., Beaumont, F. J., San Jose, G., Fortuno, A., Fortuno, M. A., Etayo, J. C., & Diez, J. (2000). Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension, 35(5), 1055-1061. https://doi.org/10.1161/01.hyp.35.5.1055.
      Zieman, S. J., Melenovsky, V., & Kass, D. A. (2005). Mechanisms, pathophysiology, and therapy of arterial stiffness. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(5), 932-943. https://doi.org/10.1161/01.ATV.0000160548.78317.29.
      Zimmer, A., Teixeira, R. B., Bonetto, J. H. P., Bahr, A. C., Turck, P., de Castro, A. L., … Bello-Klein, A. (2020). Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Molecular and Cellular Biochemistry, 464(1-2), 93-109. https://doi.org/10.1007/s11010-019-03652-2.
    • Contributed Indexing:
      Keywords: cardiac hypertrophy; collagen; glucocorticoids; heart rate variability; hypertension; vessel remodeling
    • Accession Number:
      7S5I7G3JQL (Dexamethasone)
    • Publication Date:
      Date Created: 20210225 Date Completed: 20220207 Latest Revision: 20220207
    • Publication Date:
      20240105
    • Accession Number:
      10.1002/jat.4155
    • Accession Number:
      33629383