Identifying Emergent Mesoscopic-Macroscopic Functional Brain Network Dynamics in Infants at Term-Equivalent Age with Electric Source Neuroimaging.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Mary Ann Liebert, Inc Country of Publication: United States NLM ID: 101550313 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2158-0022 (Electronic) Linking ISSN: 21580014 NLM ISO Abbreviation: Brain Connect Subsets: MEDLINE
    • Publication Information:
      Original Publication: New Rochelle, NY : Mary Ann Liebert, Inc.
    • Subject Terms:
    • Abstract:
      Aim: To identify and characterize the functional brain networks at the time when the brain is yet to develop higher order functions in term-born and preterm infants at term-equivalent age. Introduction: Although functional magnetic resonance imaging (fMRI) data have revealed the existence of spatially structured resting-state brain activity in infants, the temporal information of fMRI data limits the characterization of fast timescale brain oscillations. In this study, we use infants' high-density electroencephalography (EEG) to characterize spatiotemporal and spectral functional organizations of brain network dynamics. Methods: We used source-reconstructed EEG and graph theoretical analyses in 100 infants (84 preterm, 16 term born) to identify the rich-club topological organization, temporal dynamics, and spectral fingerprints of dynamic functional brain networks. Results: Five dynamic functional brain networks are identified, which have rich-club topological organizations, distinctive spectral fingerprints (in the delta and low-alpha frequency), and scale-invariant temporal dynamics (<0.1 Hz): The default mode, primary sensory-limbic system, thalamo-frontal, thalamo-sensorimotor, and visual-limbic system. The temporal dynamics of these networks are correlated in a hierarchically leading-following organization, showing that infant brain networks arise from long-range synchronization of band-limited cortical oscillation based on interacting fast- and slow-coherent cortical oscillations. Conclusion: Dynamic functional brain networks do not solely depend on the maturation of cognitive networks; instead, the brain network dynamics exist in infants at term age well before the childhood and adulthood, and hence, it offers a quantitative measurement of neurotypical development in infants. Clinical Trial Registration Number: ACTRN12615000591550. Impact statement Our work offers novel functional insights into the brain network characterization in infants, providing a new functional basis for future deployable prognostication approaches.
    • Contributed Indexing:
      Keywords: EEG; cortical oscillations; emerging dynamics; infant brain; preterm birth; spatiotemporal patterns
    • Publication Date:
      Date Created: 20210325 Date Completed: 20211230 Latest Revision: 20211230
    • Publication Date:
      20240105
    • Accession Number:
      10.1089/brain.2020.0965
    • Accession Number:
      33764807