Awareness of sleepiness: Temporal dynamics of subjective and objective sleepiness.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      We systematically examined the temporal relationships between subjective sleepiness and both physiological drowsiness and performance impairment in a controlled laboratory setting. Eighteen healthy young adults (8 women; M AGE  = 21.44 ± 3.24 years) underwent 40 hr of extended wakefulness, completing a bihourly Karolinska Sleepiness Scale (KSS) and 10-min Psychomotor Vigilance Task (PVT). Microsleeps and slow eye movements (SEMs) were scored during the PVT. KSS scores increased 3 hr prior to performance impairment (p < .001) and 4-6 hr prior to physiological sleepiness (p < .001). There were strong within-subject correlations between KSS and PVT lapses (r = 0.75, p < .001) and physiological drowsiness (r > 0.60, p < .001). Between-subjects product-moment correlations were more modest but showed a significant positive increase across time awake, suggesting that subjective sleepiness and objective outcomes were more tightly correlated after sleep loss. Cross-correlations showed significant positive correlations at 0-lag (p < .034); however, a high proportion of participants showed maximal correlations at positive lags, suggesting KSS was associated with future objective impairment. Within individuals, subjective sleepiness was highly correlated with objective impairment, between-subject correlations were more modest, possibly due to interindividual vulnerability to sleep loss. These results suggest that subjective sleepiness represents an inbuilt early warning system for subsequent drowsiness and performance impairment.
      (© 2021 Society for Psychophysiological Research.)
    • References:
      Åkerstedt, T., Anund, A., Axelsson, J., & Kecklund, G. (2014). Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function. Journal of Sleep Research, 23(3), 240-252. https://doi.org/10.1111/jsr.12158.
      Åkerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. International Journal of Neuroscience, 52, 29-37. https://doi.org/10.3109/00207459008994241.
      Åkerstedt, T., Hallvig, D., Anund, A., Fors, C., Schwarz, J., & Kecklund, G. (2013). Having to stop driving at night because of dangerous sleepiness-awareness, physiology and behaviour. Journal of Sleep Research, 22(4), 380-388. https://doi.org/10.1111/jsr.12042.
      Akerstedt, T., Knutsson, A., Westerholm, P., Theorell, T., Alfredsson, L., & Kecklund, G. (2002). Work organisation and unintentional sleep: Results from the WOLF study. Occupational and Environmental Medicine, 59(9), 595-600. https://doi.org/10.1136/oem.59.9.595.
      Anderson, C., Chang, A. M., Sullivan, J. P., Ronda, J. M., & Czeisler, C. A. (2013). Assessment of drowsiness based on ocular parameters detected by infrared reflectance oculography. Journal of Clinical Sleep Medicine, 9(9), 907-920. https://doi.org/10.5664/jcsm.2992.
      Anderson, C., Ftouni, S., Ronda, J. M., Rajaratnam, S. M. W., Czeisler, C. A., & Lockley, S. W. (2018). Self-reported drowsiness and safety outcomes while driving after an extended duration work shift in trainee physicians. Sleep, 41(2), zsx195. https://doi.org/10.1093/sleep/zsx195.
      Axelsson, J., Ingre, M., Kecklund, G., Lekander, M., Wright, K. P., & Sundelin, T. (2020). Sleepiness as motivation: A potential mechanism for how sleep deprivation affects behavior. Sleep, 43(6), zsz291. https://doi.org/10.1093/sleep/zsz291.
      Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers in Psychology, 8, 456. https://doi.org/10.3389/fpsyg.2017.00456.
      Basner, M., & Dinges, D. F. (2009). Dubious bargain: Trading sleep for Leno and Letterman. Sleep, 32(6), 747-752. https://doi.org/10.1093/sleep/32.6.747.
      Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodology), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
      Bland, J. M., & Altman, D. G. (2011). Correlation in restricted ranges of data. BMJ, 342, d556. https://doi.org/10.1136/bmj.d556.
      Boardman, J. M., Bei, B., Mellor, A., Anderson, C., Sletten, T. L., & Drummond, S. P. A. (2018). The ability to self-monitor cognitive performance during 60 h total sleep deprivation and following 2 nights recovery sleep. Journal of Sleep Research, 27(4), 1-8. https://doi.org/10.1111/jsr.12633.
      Bonnet, M. H., & Moore, S. E. (1982). The threshold of sleep: Perception of sleep as a function of time asleep and auditory threshold. Sleep, 5(3), 267-276. https://doi.org/10.1093/sleep/5.3.267.
      Bratzke, D., Rolke, B., Steinborn, M. B., & Ulrich, R. (2009). The effect of 40 h constant wakefulness on task-switching efficiency. Journal of Sleep Research, 18(2), 167-172. https://doi.org/10.1111/j.1365-2869.2008.00729.x.
      Cajochen, C., Khalsa, S. B. S., Wyatt, J. K., Czeisler, C. A., & Dijk, D. J. (1999). EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 277(3), R640-R649. https://doi.org/10.1152/ajpregu.1999.277.3.R640.
      Dawson, D., Searle, A. K., & Paterson, J. L. (2014). Look before you (s)leep: Evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry. Sleep Medicine Reviews, 18(2), 141-152. https://doi.org/10.1016/j.smrv.2013.03.003.
      Dinges, D. F., & Powell, J. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, 17(6), 652-655. https://doi.org/10.3758/bf03200977.
      Doran, S. M., Van Dongen, H. P. A., & Dinges, D. F. (2001). Sustained attention performance during sleep deprivation: Evidence of state instability. Archives Italiennes De Biologie, 139(3), 253-267.
      Floros, O., Axelsson, J., Almeida, R., Tigerström, L., Lekander, M., Sundelin, T., & Petrovic, P. (2021). Vulnerability in executive functions to sleep deprivation is predicted by subclinical attention-deficit/hyperactivity disorder symptoms. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(3), 290-298. https://doi.org/10.1016/j.bpsc.2020.09.019.
      Forsman, P. M., Vila, B. J., Short, R. A., Mott, C. G., & Van Dongen, H. P. A. (2013). Efficient driver drowsiness detection at moderate levels of drowsiness. Accident Analysis & Prevention, 50, 341-350. https://doi.org/10.1016/j.aap.2012.05.005.
      Ftouni, S., Rahman, S. A., Crowley, K. E., Anderson, C., Rajaratnam, S. M. W., & Lockley, S. W. (2013). Temporal dynamics of ocular indicators of sleepiness across sleep restriction. Journal of Biological Rhythms, 28(6), 412-424. https://doi.org/10.1177/0748730413512257.
      Ftouni, S., Sletten, T. L., Howard, M., Anderson, C., Lenne, M. G., Lockley, S. W., & Rajaratnam, S. M. W. (2013). Objective and subjective measures of sleepiness, and their associations with on-road driving events in shift workers. Journal of Sleep Research, 22(1), 58-69. https://doi.org/10.1111/j.1365-2869.2012.01038.x.
      Horne, J. A., & Baulk, S. D. (2004). Awareness of sleepiness when driving. Psychophysiology, 41(1), 161-165. https://doi.org/10.1046/j.1469-8986.2003.00130.x.
      Horne, J. A., & Burley, C. V. (2010). We know when we are sleepy: Subjective versus objective measurements of moderate sleepiness in healthy adults. Biological Psychology, 83(3), 266-268. https://doi.org/10.1016/j.biopsycho.2009.12.011.
      Kaida, K., Åkerstedt, T., Kecklund, G., Nilsson, J. P., & Axelsson, J. (2007). Use of subjective and physiological indicators of sleepiness to predict performance during a vigilance task. Industrial Health, 45(4), 520-526. https://doi.org/10.2486/indhealth.45.520.
      Kaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., & Fukasawa, K. (2006). Validation of the Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology, 117, 1574-1581. https://doi.org/10.1016/j.clinph.2006.03.011.
      Kaplan, K. A., Itoi, A., & Dement, W. C. (2007). Awareness of sleepiness and ability to predict sleep onset: Can drivers avoid falling asleep at the wheel? Sleep Medicine, 9(1), 71-79. https://doi.org/10.1016/j.sleep.2007.02.001.
      Lee, J., Manousakis, J., Fielding, J., & Anderson, C. (2015). Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility. Sleep, 38(5), 765. https://doi.org/10.5665/sleep.4672.
      Lee, M. L., Howard, M. E., Horrey, W. J., Liang, Y., Anderson, C., Shreeve, M. S., O’Brien, C. S., & Czeisler, C. A. (2016). High risk of near-crash driving events following night-shift work. Proceedings of the National Academy of Sciences USA, 113(1), 176-181. https://doi.org/10.1073/pnas.1510383112.
      Leproult, R., Colecchia, E. F., Berardi, A. M., Stickgold, R., Kosslyn, S. M., & Van Cauter, E. (2003). Individual differences in subjective and objective alertness during sleep deprivation are stable and unrelated. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(2), R280-R290. https://doi.org/10.1152/ajpregu.00197.2002.
      Lo, J. C., Groeger, J. A., Santhi, N., Arbon, E. L., Lazar, A. S., Hasan, S., von Schantz, M., Archer, S. N., & Dijk, D.-J. (2012). Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS One, 7(9), e45987. https://doi.org/10.1371/journal.pone.0045987.
      Maccora, J., Manousakis, J. E., & Anderson, C. (2019). Pupillary instability as an accurate, objective marker of alertness failure and performance impairment. Journal of Sleep Research, 28, e12739. https://doi.org/10.1111/jsr.12739.
      Molina, T. A., & Burgess, H. J. (2011). Calculating the dim light melatonin onset: The impact of threshold and sampling rate. Chronobiology International, 28(8), 714-718. https://doi.org/10.3109/07420528.2011.597531.
      Mulhall, M. D., Sletten, T. L., Magee, M., Stone, J. E., Ganesan, S., Collins, A., Anderson, C., Lockley, S. W., Howard, M. E., & Rajaratnam, S. M. W. (2019). Sleepiness and driving events in shift workers: The impact of circadian and homeostatic factors. Sleep, 42(6), zsz074. https://doi.org/10.1093/sleep/zsz074.
      Nakano, T., Araki, K., Michimori, A., Inbe, H., Hagiwara, H., & Koyama, E. (2000). Temporal order of sleepiness, performance and physiological indices during 19-h sleep deprivation. Psychiatry and Clinical Neurosciences, 54(3), 280-282. https://doi.org/10.1046/j.1440-1819.2000.00678.x.
      Philip, P., Chaufton, C., Nobili, L., & Garbarino, S. (2014). Errors and accidents. In S. Garbarino, L. Nobili, & G. Costa, (Eds.), Sleepiness and human impact assessment (pp. 81-92). Springer. https://doi.org/10.1007/978-88-470-5388-5_7.
      Philip, P., Sagaspe, P., Moore, N., Taillard, J., Charles, A., Guilleminault, C., & Bioulac, B. (2005). Fatigue, sleep restriction and driving performance. Accident Analysis and Prevention, 37(3), 473-478. https://doi.org/10.1016/j.aap.2004.07.007.
      Reyner, L. A., & Horne, J. A. (1998). Falling asleep whilst driving: Are drivers aware of prior sleepiness? International Journal of Legal Medicine, 111(3), 120-123. https://doi.org/10.1007/s004140050131.
      Tyagi, R., Shen, K., Shao, S., & Li, X. P. (2009). A novel auditory working-memory vigilance task for mental fatigue assessment. Safety Science, 47, 967-972. https://doi.org/10.1016/j.ssci.2008.10.018.
      Van Dongen, H. P. A., Maislin, G., Mullington, J. M., & Dinges, D. F. (2003). The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioural functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep, 26(2), 117-126. https://doi.org/10.1093/sleep/26.2.117.
      Wright, K. P., Lowry, C. A., & Lebourgeois, M. K. (2012). Circadian and wakefulness-sleep modulation of cognition in humans. Frontiers in Molecular Neuroscience, 5, 50. https://doi.org/10.3389/fnmol.2012.00050.
      Yang, C. M., Lin, F. W., & Spielman, A. J. (2004). A standard procedure enhances the correlation between subjective and objective measures of sleepiness. Sleep, 27(2), 329-332. https://doi.org/10.1093/sleep/27.2.329.
      Zhou, X., Ferguson, S. A., Matthews, R. W., Sargent, C., Darwent, D., Kennaway, D. J., & Roach, G. D. (2011). Sleep, wake and phase dependent changes in neurobehavioral function under forced desynchrony. Sleep, 34(7), 931-941.
      Zhou, X., Ferguson, S. A., Matthews, R. W., Sargent, C., Darwent, D., Kennaway, D. J., & Roach, G. D. (2012). Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night. Journal of Sleep Research, 21(1), 40-49. https://doi.org/10.1111/j.1365-2869.2011.00924.x.
    • Contributed Indexing:
      Keywords: attention; fatigue; impairment; individual differences; sleep deprivation; sleepiness
    • Publication Date:
      Date Created: 20210525 Date Completed: 20220203 Latest Revision: 20220203
    • Publication Date:
      20240105
    • Accession Number:
      10.1111/psyp.13839
    • Accession Number:
      34032305