An Approach to Automatically Label and Order Brain Activity/Component Maps.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Mary Ann Liebert, Inc Country of Publication: United States NLM ID: 101550313 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2158-0022 (Electronic) Linking ISSN: 21580014 NLM ISO Abbreviation: Brain Connect Subsets: MEDLINE
    • Publication Information:
      Original Publication: New Rochelle, NY : Mary Ann Liebert, Inc.
    • Subject Terms:
    • Abstract:
      Background: Functional magnetic resonance imaging (fMRI) is a brain imaging technique that provides detailed insights into brain function and its disruption in various brain disorders. The data-driven analysis of fMRI brain activity maps involves several postprocessing steps, the first of which is identifying whether the estimated brain network maps capture signals of interest, for example, intrinsic connectivity networks (ICNs), or artifacts. This is followed by linking the ICNs to standardized anatomical and functional parcellations. Optionally, as in the study of functional network connectivity (FNC), rearranging the connectivity graph is also necessary to facilitate interpretation. Methods: Here we develop a novel and efficient method (Autolabeler) for implementing and integrating all of these processes in a fully automated manner. The Autolabeler method is pretrained on a cross-validated elastic-net regularized general linear model from the noisecloud toolbox to separate neuroscientifically meaningful ICNs from artifacts. It is capable of automatically labeling activity maps with labels from several well-known anatomical and functional parcellations. Subsequently, this method also maximizes the modularity within functional domains to generate a more systematically structured FNC matrix for post hoc network analyses. Results: Results show that our pretrained model achieves 86% accuracy at classifying ICNs from artifacts in an independent validation data set. The automatic anatomical and functional labels also have a high degree of similarity with manual labels selected by human raters. Discussion: At a time of ever-increasing rates of generating brain imaging data and analyzing brain activity, the proposed Autolabeler method is intended to automate such analyses for faster and more reproducible research. Impact statement Our proposed method is capable of implementing and integrating some of the crucial tasks in functional magnetic resonance imaging (fMRI) studies. It is the first to incorporate such tasks without the need for expert intervention. We develop an open-source toolbox for the proposed method that can function as stand-alone software and additionally provides seamless integration with the widely used group independent component analysis for fMRI toolbox (GIFT). This integration can aid investigators to conduct fMRI studies in an end-to-end automated manner.
    • References:
      J Neurosci Methods. 2010 Jun 15;189(2):233-45. (PMID: 20381530)
      Neuroimage. 2009 May 15;46(1):73-86. (PMID: 19457398)
      Neuroimage. 2002 Jan;15(1):273-89. (PMID: 11771995)
      J Neurophysiol. 2011 Jun;105(6):2753-63. (PMID: 21430278)
      Neuroimaging Clin N Am. 2017 Nov;27(4):561-579. (PMID: 28985929)
      Neuroimage. 2015 Nov 15;122:1-5. (PMID: 26241684)
      Neuroimage. 2020 Feb 1;206:116189. (PMID: 31521825)
      Hum Brain Mapp. 2019 Oct 15;40(15):4577-4587. (PMID: 31322303)
      Hum Brain Mapp. 2001 Nov;14(3):140-51. (PMID: 11559959)
      IEEE Trans Med Imaging. 2002 May;21(5):470-84. (PMID: 12071618)
      Neuroimage. 2008 Feb 15;39(4):1666-81. (PMID: 18082428)
      Neuroimage Clin. 2014 Jul 24;5:298-308. (PMID: 25161896)
      Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34. (PMID: 20471808)
      Science. 2013 May 10;340(6133):687-8. (PMID: 23661744)
      Neural Comput. 1995 Nov;7(6):1129-59. (PMID: 7584893)
      Neuroimage. 2008 Feb 1;39(3):1227-45. (PMID: 18042495)
      Neuroinformatics. 2017 Oct;15(4):343-364. (PMID: 28812221)
      Biochim Biophys Acta. 1975 Oct 20;405(2):442-51. (PMID: 1180967)
      Hum Brain Mapp. 1998;6(3):160-88. (PMID: 9673671)
      IEEE Rev Biomed Eng. 2012;5:60-73. (PMID: 23231989)
      Neuroimage Clin. 2020;28:102375. (PMID: 32961402)
      Hum Brain Mapp. 2016 Mar;37(3):1005-25. (PMID: 26859308)
      Neuroimage. 2017 Jul 1;154:128-149. (PMID: 27956209)
      Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. (PMID: 19620724)
      Magn Reson Med. 2000 Jul;44(1):162-7. (PMID: 10893535)
      Neuroimage. 2006 Nov 1;33(2):471-81. (PMID: 16952468)
      J Neurophysiol. 2011 Nov;106(5):2322-45. (PMID: 21795627)
      Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53. (PMID: 16945915)
      Comput Biomed Res. 1996 Jun;29(3):162-73. (PMID: 8812068)
      PLoS One. 2014 Apr 18;9(4):e95493. (PMID: 24748378)
      Neuroimage. 2016 Jan 1;124(Pt B):1074-1079. (PMID: 26364863)
      Cereb Cortex. 2016 Jan;26(1):288-303. (PMID: 25316338)
      Neuroimage. 2010 Sep;52(3):1059-69. (PMID: 19819337)
      Schizophr Res. 2016 Jan;170(1):55-65. (PMID: 26654933)
      Neuroimage. 2015 May 15;112:267-277. (PMID: 25770991)
      Neuroimage. 2013 Oct 15;80:349-59. (PMID: 23571418)
      Neuroimage. 2014 Jul 15;95:232-47. (PMID: 24657355)
      Neuroimage. 2005 May 1;25(4):1325-35. (PMID: 15850749)
      Neuroimage. 2014 Apr 15;90:449-68. (PMID: 24389422)
      Soc Cogn Affect Neurosci. 2021 Aug 5;16(8):849-874. (PMID: 32785604)
      J Neurophysiol. 2011 Sep;106(3):1125-65. (PMID: 21653723)
      PLoS Biol. 2018 Nov 26;16(11):e3000066. (PMID: 30475794)
    • Contributed Indexing:
      Keywords: anatomical atlas; brain imaging; fMRI; functional network connectivity; functional parcellation
    • Publication Date:
      Date Created: 20210527 Date Completed: 20220503 Latest Revision: 20230202
    • Publication Date:
      20240105
    • Accession Number:
      PMC8867103
    • Accession Number:
      10.1089/brain.2020.0950
    • Accession Number:
      34039009