Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Mary Ann Liebert, Inc Country of Publication: United States NLM ID: 101466659 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1937-335X (Electronic) Linking ISSN: 19373341 NLM ISO Abbreviation: Tissue Eng Part A Subsets: MEDLINE
    • Publication Information:
      Original Publication: New Rochelle, NY : Mary Ann Liebert, Inc.
    • Subject Terms:
    • Abstract:
      Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in three-dimensional (3D) printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These premixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from two-dimensional cultured dorsal root ganglion explants. The nerve cells were also encapsulated in the GelMA/pDNM-G hydrogel for 3D culture or underwent cell-laden bioprinting with high cell viability. The preparation of such GelMA/dECM-G hydrogels enabled the recapitulation of functional tissues through extrusion-based bioprinting, which holds great potential for applications in regenerative medicine. Impact statement Tissue-derived decellularized matrices have drawn broad interests for their versatile applications in tissue engineering and regenerative medicine, especially the decellularized peripheral nerve matrix, which can effectively facilitate axonal extension, remyelination, and neural functional restoration after peripheral nerve injury. However, neither decellularized porcine nerve matrix (pDNM) nor pDNM hydrogel (pDNM-G) can be directly used in three-dimensional printing for personalized nerve constructs or cell transplantation. This work developed a hybrid hydrogel consisting of decellularized extracellular matrix hydrogel (dECM-G) and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. The GelMA/pDNM-G hydrogel retained high bioactivity and tissue-specificity due to its dECM-G content. Such hybrid hydrogel systems built up a springboard in advanced biomaterials for neural tissue engineering, as well as a promising strategy for dECM containing bioprinting.
    • Contributed Indexing:
      Keywords: 3D bioprinting; Schwann cells; decellularized extracellular matrix hydrogel; neurite; tissue specificity
    • Accession Number:
      0 (Hydrogels)
      9000-70-8 (Gelatin)
    • Publication Date:
      Date Created: 20210726 Date Completed: 20220308 Latest Revision: 20220531
    • Publication Date:
      20240105
    • Accession Number:
      10.1089/ten.TEA.2021.0093
    • Accession Number:
      34309417