Bioinspired, Shape-Morphing Scale Battery for Untethered Soft Robots.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Mary Ann Liebert, Inc Country of Publication: United States NLM ID: 101623819 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2169-5180 (Electronic) Linking ISSN: 21695172 NLM ISO Abbreviation: Soft Robot Subsets: MEDLINE
    • Publication Information:
      Original Publication: New Rochelle, NY : Mary Ann Liebert, Inc., [2014]-
    • Subject Terms:
    • Abstract:
      Geometrically multifunctional structures inspired by nature can address the challenges in the development of soft robotics. A bioinspired structure based on origami and kirigami can significantly enhance the stretchability and reliability of soft robots. This study proposes a novel structure with individual, overlapping units, similar to snake scales that can be used to construct shape-morphing batteries for untethered soft robots. The structure is created by folding well-defined, two-dimensional patterns with cutouts. The folding lines mimic the hinge structure of snakeskin, enabling stable deformations without mechanical damage to rigid cells. The structure realizes multi-axial deformability and a zero Poisson's ratio without off-axis distortion to the loading axis. Moreover, to maximize areal density, the optimal cell shape is designed as a hexagon. The structure is applied to a stretchable Li-ion battery, constructed to form an arrangement of electrically interconnected, hexagonal pouch cells. In situ electrochemical characterization and numerical simulation confirm that the shape-morphing scale battery maintains its performance under dynamic deformation with a 90% stretching ratio and 10-mm-radius bending curve, guaranteeing a long-lasting charging/discharging cycle life during cyclic bending and stretching (exceeding 36,000 cycles). Finally, the shape-morphing energy storage device is applied to movable robots, mimicking crawling and slithering, to demonstrate excellent conformability and deformability.
    • Contributed Indexing:
      Keywords: scale structure; shape-morphing; soft robotics; stretchable Li-ion battery; stretchable electronics
    • Publication Date:
      Date Created: 20210817 Date Completed: 20220613 Latest Revision: 20220628
    • Publication Date:
      20240104
    • Accession Number:
      10.1089/soro.2020.0175
    • Accession Number:
      34402653