Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Academic Press Country of Publication: Belgium NLM ID: 9815657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-7184 (Electronic) Linking ISSN: 10967176 NLM ISO Abbreviation: Metab Eng Subsets: MEDLINE
    • Publication Information:
      Original Publication: Brugge, Belgium ; Orlando, FL : Academic Press, c1999-
    • Subject Terms:
    • Abstract:
      Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.
      (Copyright © 2021 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.)
    • Contributed Indexing:
      Keywords: Biogas; Escherichia coli; Methane; Methane monooxygenase; Methanol; Natural gas; Synthetic methanotrophy; Synthetic methylotrophy
    • Accession Number:
      7440-44-0 (Carbon)
      OP0UW79H66 (Methane)
      Y4S76JWI15 (Methanol)
    • Publication Date:
      Date Created: 20210921 Date Completed: 20220411 Latest Revision: 20220531
    • Publication Date:
      20240105
    • Accession Number:
      10.1016/j.ymben.2021.09.005
    • Accession Number:
      34547453