Clinical significance of the cognition-related pathogenic proteins in plasma neuronal-derived exosomes among normal cognitive adults over 45 years old with olfactory dysfunction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Chen Z;Chen Z; Chang F; Chang F; Yao L; Yao L; Yuan F; Yuan F; Hong J; Hong J; Wu D; Wu D; Wei Y; Wei Y; Wei Y; Wei Y
  • Source:
    European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery [Eur Arch Otorhinolaryngol] 2022 Jul; Vol. 279 (7), pp. 3467-3476. Date of Electronic Publication: 2021 Oct 24.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer International Country of Publication: Germany NLM ID: 9002937 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1434-4726 (Electronic) Linking ISSN: 09374477 NLM ISO Abbreviation: Eur Arch Otorhinolaryngol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Heidelberg : Springer International, c1990-
    • Subject Terms:
    • Abstract:
      Objectives: Exosomal Phospho-Tau-181(P-T181-tau), Total tau (T-tau), and amyloid-β peptide 42 (Aβ42) have been proved the capacity for the amnestic mild cognitive impairment (MCI) and the diagnosis of Alzheimer's disease (AD). This study aimed to explore the cognitive function and the levels of P-T181-tau, T-tau, and Aβ42 in neuronal-derived exosomes (NDEs) extracted from plasma in normal cognitive adults over 45 years old with olfactory dysfunction.
      Methods: A cross-sectional survey of 29 participants aged over 45 was conducted. Plasma exosomes were isolated, precipitated, and enriched by immuno-absorption with anti- L1 cell adhesion molecule (L1CAM) antibody. NDEs were characterized by CD81, and extracted NDE protein (P-T181-tau, T-tau, and Aβ42) biomarkers were quantified by enzyme-linked immunosorbent assay (ELISAs). Olfactory performance was assessed by Sniffin' Sticks and cognitive performance was assessed by Montreal Cognitive Assessment (MoCA).
      Results: There was no significant difference between adults with olfactory dysfunction and without olfactory dysfunction regarding the cognitive function as measured by MoCA and all the participants showed normal cognition. Adults with olfactory dysfunction showed a higher concentration of P-T181-tau in plasma NDEs than did adults without olfactory dysfunction (P = 0.034). Both the levels of P-T181-tau (r = - 0.553, P = 0.003) and T-tau (r = - 0.417, P = 0.034) negatively correlated with the odor identification scores. In addition, the level of T-tau negatively correlated with MoCA scores (r = - 0.597, P = 0.002). The levels of P-T181-tau (r = - 0.464, P = 0.022) and T-tau (r = - 0.438, P = 0.032) negatively correlated with the delayed recall scores.
      Conclusions: This study demonstrated that cognition-related pathogenic proteins including P-T181-tau in plasma NDEs were significantly increased in adults over 45 years old with olfactory dysfunction before the occurrence of cognitive impairment. The impaired odor identification and the delayed recall function were highly associated with the increased levels of P-T181-tau and T-tau in plasma NDEs.
      (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Fang EF, Scheibye-Knudsen M, Jahn HJ, Li J, Ling L, Guo H, Zhu X, Preedy V, Lu H, Bohr VA, Chan WY, Liu Y, Ng TB (2015) A research agenda for aging in China in the 21st century. Ageing Res Rev 24(Pt B):197–205. https://doi.org/10.1016/j.arr.2015.08.003. (PMID: 10.1016/j.arr.2015.08.003263048375179143)
      Lu Y, Liu C, Yu D, Fawkes S, Ma J, Zhang M, Li C (2021) Prevalence of mild cognitive impairment in community-dwelling Chinese populations aged over 55 years: a meta-analysis and systematic review. BMC Geriatr 21(1):10. https://doi.org/10.1186/s12877-020-01948-3. (PMID: 10.1186/s12877-020-01948-3334072197789349)
      Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet (London, England) 367(9518):1262–1270. https://doi.org/10.1016/S0140-6736(06)68542-5. (PMID: 10.1016/S0140-6736(06)68542-5)
      Deng Y, Zhao S, Cheng G, Yang J, Li B, Xu K, Xiao P, Li W, Rong S (2021) The prevalence of mild cognitive impairment among Chinese people: a meta-analysis. Neuroepidemiology 55:1–13. https://doi.org/10.1159/000512597. (PMID: 10.1159/000512597)
      Petersen RC (2011) Clinical practice Mild cognitive impairment. N Engl J Med 364(23):2227–2234. https://doi.org/10.1056/NEJMcp0910237. (PMID: 10.1056/NEJMcp091023721651394)
      Ding D, Zhao Q, Guo Q, Liang X, Luo J, Yu L, Zheng L, Hong Z (2016) Progression and predictors of mild cognitive impairment in Chinese elderly: a prospective follow-up in the Shanghai Aging Study. Alzheimer’s Dementia (Amsterdam, Netherlands) 4:28–36. https://doi.org/10.1016/j.dadm.2016.03.004. (PMID: 10.1016/j.dadm.2016.03.004)
      Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. https://doi.org/10.1212/WNL.0b013e31828726f5. (PMID: 10.1212/WNL.0b013e31828726f5233901813719424)
      Su B, Bleier B, Wei Y, Wu D (2021) Clinical implications of psychophysical olfactory testing: assessment, diagnosis, and treatment outcome. Front Neurosci 15:646956. https://doi.org/10.3389/fnins.2021.646956. (PMID: 10.3389/fnins.2021.646956338150488012732)
      Bahar-Fuchs A, Moss S, Rowe C, Savage G (2010) Olfactory performance in AD, aMCI, and healthy ageing: a unirhinal approach. Chem Senses 35(9):855–862. https://doi.org/10.1093/chemse/bjq094. (PMID: 10.1093/chemse/bjq09420870956)
      Chan A, Tam J, Murphy C, Chiu H, Lam L (2002) Utility of olfactory identification test for diagnosing Chinese patients with Alzheimer’s disease. J Clin Exp Neuropsychol 24(2):1380–3395. https://doi.org/10.1076/jcen.24.2.251.992. (PMID: 10.1076/jcen.24.2.251.992)
      Devanand DP (2016) Olfactory identification deficits, cognitive decline, and dementia in older adults. Am J Geriatr Psychiatry 24(12):1545–7214. https://doi.org/10.1016/j.jagp.2016.08.010. (PMID: 10.1016/j.jagp.2016.08.010)
      Adams DR, Kern DW, Wroblewski KE, McClintock MK, Dale W, Pinto JM (2018) Olfactory dysfunction predicts subsequent dementia in older U.S. adults. J Am Geriatr Soc 2018:1532–5415. https://doi.org/10.1111/jgs.15048. (PMID: 10.1111/jgs.15048)
      Attems J, Walker L, Jellinger KA (2015) Olfaction and aging: a mini-review. Gerontology 61(6):485–490. https://doi.org/10.1159/000381619. (PMID: 10.1159/00038161925968962)
      Schubert CR, Carmichael LL, Murphy C, Klein BE, Klein R, Cruickshanks KJ (2008) Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults. J Am Geriatr Soc 56(8):1517–1521. https://doi.org/10.1111/j.1532-5415.2008.01826.x. (PMID: 10.1111/j.1532-5415.2008.01826.x186622052587240)
      Windon MJ, Kim SJ, Oh ES, Lin SY (2019) Predictive value of olfactory impairment for cognitive decline among cognitively normal adults. Laryngoscope 130(4):840–847. https://doi.org/10.1002/lary.28166. (PMID: 10.1002/lary.2816631271464)
      Chen Z, Xie H, Yao L, Wei Y (2020) Olfactory impairment and the risk of cognitive decline and dementia in older adults: a meta-analysis. Braz J Otorhinolaryngol 87(1):94–102. https://doi.org/10.1016/j.bjorl.2020.07.009. (PMID: 10.1016/j.bjorl.2020.07.00933176987)
      Bathini P, Brai E, Auber LA (2019) Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 55:100956. (PMID: 10.1016/j.arr.2019.100956)
      Servello A, Fioretti A, Gualdi G, Di Biasi C, Pittalis A, Sollaku S, Pavaci S, Tortorella F, Fusetti M, Valenti M, Masedu F, Cacciafesta M, Marigliano V, Ettorre E, Pagliarella M (2015) Olfactory dysfunction, olfactory bulb volume and Alzheimer’s disease: is there a correlation? A pilot study. J Alzheimers Dis 48(2):395–402. https://doi.org/10.3233/JAD-150232. (PMID: 10.3233/JAD-15023226402003)
      Daulatzai MA (2015) Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer’s disease. 122:1475–1497. https://doi.org/10.1007/s00702-015-1404-6. (PMID: 10.1007/s00702-015-1404-6)
      Seubert J, Laukka EJ, Rizzuto D, Hummel T, Fratiglioni L, Bäckman L, Larsson M (2017) Prevalence and correlates of olfactory dysfunction in old age: a population-based study. J Gerontol A Biol Sci Med Sci 72(8):1072–1079. https://doi.org/10.1093/gerona/glx054. (PMID: 10.1093/gerona/glx054284441355861894)
      Lojkowska W, Sawicka B, Gugala M, Sienkiewicz-Jarosz H, Bochynska A, Scinska A, Korkosz A, Lojek E, Ryglewicz D (2011) Follow-up study of olfactory deficits, cognitive functions, and volume loss of medial temporal lobe structures in patients with mild cognitive impairment. Curr Alzheimer Res 8(6):689–698. https://doi.org/10.2174/156720511796717212. (PMID: 10.2174/15672051179671721221592056)
      Bamberger C, Pankow S, Martínez-Bartolomé S, Ma M, Diedrich J, Rissman RA, Yates JR 3rd (2021) Protein footprinting via covalent protein painting reveals structural changes of the proteome in Alzheimer’s disease. J Proteome Res. https://doi.org/10.1021/acs.jproteome.0c00912. (PMID: 10.1021/acs.jproteome.0c00912347619358477671)
      Abbasi J (2020) Alzheimer blood test using tau biomarker is in development. JAMA 323(14):1336. https://doi.org/10.1001/jama.2020.4542. (PMID: 10.1001/jama.2020.454232286633)
      Barthélemy NR, Horie K, Sato C, Bateman RJ (2020) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med 217(11):861. https://doi.org/10.1084/jem.20200861. (PMID: 10.1084/jem.20200861)
      Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR (2016) Extracellular vesicles in neurodegenerative disease—pathogenesis to biomarkers. Nat Rev Neurol 12(6):346–357. https://doi.org/10.1038/nrneurol.2016.68. (PMID: 10.1038/nrneurol.2016.6827174238)
      Chiasserini D, van Weering JRT, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jiménez CR (2014) Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteomics 106:191–204. https://doi.org/10.1016/j.jprot.2014.04.028. (PMID: 10.1016/j.jprot.2014.04.02824769233)
      Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu S-C, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128(5):639–650. https://doi.org/10.1007/s00401-014-1314-y. (PMID: 10.1007/s00401-014-1314-y249978494201967)
      Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracellular Vesicles 3:23743. https://doi.org/10.3402/jev.v3.23743. (PMID: 10.3402/jev.v3.23743)
      Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648. https://doi.org/10.1016/j.mcn.2005.12.003. (PMID: 10.1016/j.mcn.2005.12.00316446100)
      Jia L, Qiu Q, Zhang H, Chu L, Du Y, Zhang J, Zhou C, Liang F, Shi S, Wang S, Qin W, Wang Q, Li F, Wang Q, Li Y, Shen L, Wei Y, Jia J (2019) Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement 15(8):1071–1080. https://doi.org/10.1016/j.jalz.2019.05.002. (PMID: 10.1016/j.jalz.2019.05.00231422798)
      Nam E, Lee Y-B, Moon C, Chang K-A (2020) Serum Tau proteins as potential biomarkers for the assessment of Alzheimer’s disease progression. Int J Mole Sci 21(14):5007. https://doi.org/10.3390/ijms21145007. (PMID: 10.3390/ijms21145007)
      Chen T-B, Lee Y-J, Lin S-Y, Chen J-P, Hu C-J, Wang P-N, Cheng IH (2019) Plasma Aβ42 and Total Tau predict cognitive decline in amnestic mild cognitive impairment. Sci Rep 9(1):13984. https://doi.org/10.1038/s41598-019-50315-9. (PMID: 10.1038/s41598-019-50315-9315623556764975)
      Parnetti L, Chiasserini D, Eusebi P, Giannandrea D, Bellomo G, De Carlo C, Padiglioni C, Mastrocola S, Lisetti V, Calabresi P (2012) Performance of aβ1-40, aβ1-42, total tau, and phosphorylated tau as predictors of dementia in a cohort of patients with mild cognitive impairment. J Alzheimer’s Dis 29(1):229–238. https://doi.org/10.3233/JAD-2011-111349. (PMID: 10.3233/JAD-2011-111349)
      Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer’s Dementia 11(6):600-607. https://doi.org/10.1016/j.jalz.2014.06.008. (PMID: 10.1016/j.jalz.2014.06.00825130657)
      Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC, Spangler RD, Tran J, Lazaropoulos MP, Chawla S, Gulyani S, Eitan E, An Y, Huang C-W, Oh ES, Lyketsos CG, Resnick SM, Goetzl EJ, Ferrucci L (2019) Association of extracellular vesicle biomarkers with Alzheimer disease in the baltimore longitudinal study of aging. JAMA Neurol 76(11):1340–1351. https://doi.org/10.1001/jamaneurol.2019.2462. (PMID: 10.1001/jamaneurol.2019.2462313059186632160)
      Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D, Masliah E, Rissman RA (2016) Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement (Amst) 3:63–72. https://doi.org/10.1016/j.dadm.2016.04.001. (PMID: 10.1016/j.dadm.2016.04.001)
      Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC, Masters CL (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367. https://doi.org/10.1016/s1474-4422(13)70044-9. (PMID: 10.1016/s1474-4422(13)70044-923477989)
      Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292. https://doi.org/10.1016/j.jalz.2011.03.003. (PMID: 10.1016/j.jalz.2011.03.003215142483220946)
      Nasreddine Phillips Bédirian Charbonneau Whitehead Isabelle Collin Cummings Chertkow ZSNAVSVJLH (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x. (PMID: 10.1111/j.1532-5415.2005.53221.x15817019)
      Lu J, Li D, Li F, Zhou A, Wang F, Zuo X, Jia XF, Song H, Jia J (2011) Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol 24(4):184–190. https://doi.org/10.1177/0891988711422528. (PMID: 10.1177/089198871142252822228824)
      Wen HB, Zhang ZX, Niu FS, Li L (2008) The application of Montreal cognitive assessment in urban Chinese residents of Beijing. Zhonghua Nei Ke Za Zhi 47(1):36–39. (PMID: 18346324)
      Yu J, Li J, Huang X (2012) The Beijing version of the Montreal Cognitive Assessment as a brief screening tool for mild cognitive impairment: a community-based study. BMC Psychiatry 12:156. https://doi.org/10.1186/1471-244x-12-156. (PMID: 10.1186/1471-244x-12-156230091263499377)
      Yu K, Zhang S, Wang Q, Wang X, Qin Y, Wang J, Li C, Wu Y, Wang W, Lin H (2014) Development of a computerized tool for the chinese version of the montreal cognitive assessment for screening mild cognitive impairment. Int Psychogeriatr 27:213–219. https://doi.org/10.1017/s1041610214002269. (PMID: 10.1017/s1041610214002269)
      Pendlebury ST, Cuthbertson FC, Welch SJV, Mehta Z, Rothwell PM (2010) Underestimation of cognitive impairment by mini-mental State examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke 41(6):1290–1293. https://doi.org/10.1161/STROKEAHA.110.579888. (PMID: 10.1161/STROKEAHA.110.57988820378863)
      Tang Z, Chen X, Zhang W, Sun X, Hou Q, Li Y, Feng X, Chen Y, Lv J, Ji L, Ding G, Li D (2021) Association between gamma-glutamyl transferase and mild cognitive impairment in Chinese women. Front Aging Neurosci 13:630409. https://doi.org/10.3389/fnagi.2021.630409. (PMID: 10.3389/fnagi.2021.630409336430247902766)
      Su B, Wu D, Wei Y (2021) Development of Chinese odor identification test. Ann Transl Med. 9(6):499. https://doi.org/10.21037/atm-21-913. (PMID: 10.21037/atm-21-913338508968039711)
      Wu D, Li Y, Bleier BS, Wei Y (2020) Superior turbinate eosinophilia predicts olfactory decline in patients with chronic rhinosinusitis. Ann Allergy Asthma Immunol 125(3):304-310.e301. https://doi.org/10.1016/j.anai.2020.04.027. (PMID: 10.1016/j.anai.2020.04.02732387168)
      Huang T, Wei Y, Wu D (2021) Effects of olfactory training on posttraumatic olfactory dysfunction: a systematic review and meta-analysis. Int Forum Allergy Rhinol 11(7):1102-1112. https://doi.org/10.1002/alr.22758. (PMID: 10.1002/alr.22758341320588358954)
      Liu Y, Fang F, Zhan X, Yao L, Wei Y (2020) The impact of obstructive apnea sleep syndrome on chemical function. Sleep Breath 24(4):1549–1555. https://doi.org/10.1007/s11325-020-02022-3. (PMID: 10.1007/s11325-020-02022-332034614)
      De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203. https://doi.org/10.3389/fimmu.2015.00203. (PMID: 10.3389/fimmu.2015.00203259999474418172)
      Shaimardanova AA, Solovyeva VV, Chulpanova DS, James V, Kitaeva KV, Rizvanov AA (2020) Extracellular vesicles in the diagnosis and treatment of central nervous system diseases. Neural Regen Res 15(4):586–596. https://doi.org/10.4103/1673-5374.266908. (PMID: 10.4103/1673-5374.26690831638080)
      Lakshmi S, Essa MM, Hartman RE, Guillemin GJ, Sivan S, Elumalai P (2020) Exosomes in Alzheimer’s disease: potential role as pathological mediators Biomarkers and Therapeutic Targets. Neurochem Res 45(11):2553–2559. https://doi.org/10.1007/s11064-020-03111-1. (PMID: 10.1007/s11064-020-03111-132840760)
      Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Hillsdale, New Jersey.
      Tsai C-L, Liang C-S, Lee J-T, Su M-W, Lin C-C, Chu H-T, Tsai C-K, Lin G-Y, Lin Y-K, Yang F-C (2019) Associations between plasma biomarkers and cognition in patients with Alzheimer’s disease and amnestic mild cognitive impairment: a cross-sectional and longitudinal study. J Clin Med 8(11):1893. https://doi.org/10.3390/jcm8111893. (PMID: 10.3390/jcm81118936912664)
      Pettigrew C, Soldan A, Sloane K, Cai Q, Wang J, Wang MC, Moghekar A, Miller MI, Albert M (2017) Progressive medial temporal lobe atrophy during preclinical Alzheimer’s disease. Neuroimage Clin 16:439–446. https://doi.org/10.1016/j.nicl.2017.08.022. (PMID: 10.1016/j.nicl.2017.08.022288790855577409)
      Li S, Li W, Wu X, Li J, Yang J, Tu C, Ye X, Ling S (2019) Olfactory deficit is associated with mitral cell dysfunction in the olfactory bulb of P301S tau transgenic mice. Brain Res Bull 148:34–45. https://doi.org/10.1016/j.brainresbull.2019.03.006. (PMID: 10.1016/j.brainresbull.2019.03.00630902575)
      Zetterberg H (2017) Review: Tau in biofluids—relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol 43(3):194–199. https://doi.org/10.1111/nan.12378. (PMID: 10.1111/nan.1237828054371)
      Devanand DP, Tabert MH, Cuasay K, Manly JJ, Schupf N, Brickman AM, Andrews H, Brown TR, DeCarli C, Mayeux R (2010) Olfactory identification deficits and MCI in a multi-ethnic elderly community sample. Neurobiol Aging 31(9):1593–1600. https://doi.org/10.1016/j.neurobiolaging.2008.09.008. (PMID: 10.1016/j.neurobiolaging.2008.09.00818963256)
      Klein J, Yan X, Johnson A, Tomljanovic Z, Zou J, Polly K, Honig LS, Brickman AM, Stern Y, Devanand DP, Lee S, Kreisl WC (2021) Olfactory impairment is related to Tau pathology and neuroinflammation in Alzheimer’s disease. J Alzheimers Dis 80(3):1051–1065. https://doi.org/10.3233/jad-201149. (PMID: 10.3233/jad-201149336461538044007)
      Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/bf00308809. (PMID: 10.1007/bf003088091759558)
      Kovacs T, Cairns NJ, Lantos PL (2001) Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. NeuroReport 12(2):285–288. https://doi.org/10.1097/00001756-200102120-00021. (PMID: 10.1097/00001756-200102120-0002111209936)
      Klein J, Yan X, Johnson A, Tomljanovic Z, Zou J, Polly K, Honig LS, Brickman AM, Stern Y, Devanand DP, Lee S, Kreisl WC (2021) Olfactory impairment is related to Tau pathology and neuroinflammation in Alzheimer’s disease. J Alzheimer’s Dis 80(3):1051-1065. https://doi.org/10.3233/JAD-201149. (PMID: 10.3233/JAD-201149)
      Bouras C, Hof PR, Morrison JH (1993) Neurofibrillary tangle densities in the hippocampal formation in a non-demented population define subgroups of patients with differential early pathologic changes. Neurosci Lett 153(2):131–135. https://doi.org/10.1016/0304-3940(93)90305-5. (PMID: 10.1016/0304-3940(93)90305-58327187)
      Growdon ME, Schultz AP, Dagley AS, Amariglio RE, Hedden T, Rentz DM, Johnson KA, Sperling RA, Albers MW, Marshall GA (2015) Odor identification and Alzheimer disease biomarkers in clinically normal elderly. Neurology 84(21):2153–2160. https://doi.org/10.1212/wnl.0000000000001614. (PMID: 10.1212/wnl.0000000000001614259348524451046)
      Wilson RS, Arnold SE, Schneider JA, Tang Y, Bennett DA (2007) The relationship between cerebral Alzheimer’s disease pathology and odour identification in old age. J Neurol Neurosurg Psychiatry 78(1):30–35. https://doi.org/10.1136/jnnp.2006.099721. (PMID: 10.1136/jnnp.2006.09972117012338)
      Tarawneh R, Holtzman DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2(5):a006148. https://doi.org/10.1101/cshperspect.a006148. (PMID: 10.1101/cshperspect.a006148225534923331682)
      Park S-J, Lee J-E, Lee K-S, Kim J-S (2018) Comparison of odor identification among amnestic and non-amnestic mild cognitive impairment, subjective cognitive decline, and early Alzheimer’s dementia. Neurol Sci 39(3):557–564. https://doi.org/10.1007/s10072-018-3261-1. (PMID: 10.1007/s10072-018-3261-129383614)
      Roberts RO, Christianson TJH, Kremers WK, Mielke MM, Machulda MM, Vassilaki M, Alhurani RE, Geda YE, Knopman DS, Petersen RC (2016) Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol 73(1):93–101. https://doi.org/10.1001/jamaneurol.2015.2952. (PMID: 10.1001/jamaneurol.2015.2952265693874710557)
      Acebes A, Martin-Pena A, Chevalier V, Ferrus A (2011) Synapse loss in olfactory local interneurons modifies perception. J Neurosci 31(8):2734–2745. https://doi.org/10.1523/jneurosci.5046-10.2011. (PMID: 10.1523/jneurosci.5046-10.2011214148966623785)
      Liu X, Zeng K, Li M, Wang Q, Liu R, Zhang B, Wang J-Z, Shu X, Wang X (2017) Expression of P301L-hTau in mouse MEC induces hippocampus-dependent memory deficit. Sci Rep 7:4. https://doi.org/10.1038/s41598-017-04305-4. (PMID: 10.1038/s41598-017-04305-4)
      Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580. https://doi.org/10.1002/ana.410300410. (PMID: 10.1002/ana.4103004101789684)
      Budnik V, Ruiz-Cañada C, Wendler F (2016) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17(3):160–172. https://doi.org/10.1038/nrn.2015.29. (PMID: 10.1038/nrn.2015.29268916264989863)
      Schinder AF, Morgenstern NA (2009) Adult neurogenesis is altered by GABAergic imbalance in models of Alzheimer’s disease. Cell Stem Cell 5(6):573–574. https://doi.org/10.1016/j.stem.2009.11.007. (PMID: 10.1016/j.stem.2009.11.00719951683)
      Sun B, Halabisky B, Zhou Y, Palop JJ, Yu G, Mucke L, Gan L (2009) Imbalance between GABAergic and Glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer’s disease. Cell Stem Cell 5(6):624–633. https://doi.org/10.1016/j.stem.2009.10.003. (PMID: 10.1016/j.stem.2009.10.003199516902823799)
    • Grant Information:
      QML20190617 Beijing Hospitals Authority Youth Program; Z201100006820086 Beijing Science and Technology Nova Program; 82000954 Natural Science Foundation of China; XMLX202136 Beijing Hospitals Authority Clinical Medicine Development of Special Funding; SML20190601 Beijing Hospitals Authority' Mission Plan; NO.051 Beijing Scholars Program; 2019YFE0116000 National Key R&D Program of China
    • Contributed Indexing:
      Keywords: Adults; Aβ-42; MoCA; Neuronal-derived exosomes; Normal cognition; Olfactory dysfunction; P-T181-tau; T-tau
    • Accession Number:
      0 (Amyloid beta-Peptides)
      0 (Biomarkers)
      0 (Peptide Fragments)
    • Publication Date:
      Date Created: 20211025 Date Completed: 20220526 Latest Revision: 20220531
    • Publication Date:
      20240105
    • Accession Number:
      10.1007/s00405-021-07143-3
    • Accession Number:
      34693486