Chromosome-level de novo genome assembly and whole-genome resequencing of the threatened species Acanthochlamys bracteata (Velloziaceae) provide insights into alpine plant divergence in a biodiversity hotspot.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: England NLM ID: 101465604 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-0998 (Electronic) Linking ISSN: 1755098X NLM ISO Abbreviation: Mol Ecol Resour Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, England : Blackwell
    • Subject Terms:
    • Abstract:
      The Hengduan Mountains region is an important hotspot of alpine plant diversity and endemism. Acanthochlamys bracteata is a species of a threatened monotypic genus endemic to the Hengduan Mountains. In this study, we present a high-quality, chromosome-level reference genome for A. bracteata, constructed using long reads, short reads and Hi-C technology. We characterized its genetic diversity, population structure, demographic history and gene flow by resequencing individuals collected across its distribution. Comparative genomics analyses based on sequence information from single-copy orthologous genes revealed that A. bracteata and Dioscorea rotundata diverged ~104.5 million years ago. Whole-genome resequencing based on population genetic analysis revealed that the division of the 14 populations into 10 distinct clusters reflected geographical divergence, and three separate high levels of gene flow occurred sequentially between isolated populations of the Hengduan Mountains, a finding which is consistent with the turnover between ice ages and interglacial periods. Our findings indicate that Quaternary climatic changes played an important role in shaping the genetic structure and demographic trajectories of A. bracteata, and provide critical insights into the genetic status and evolutionary history of this poorly understood species, and possibly other alpine plants with a similar distribution. This study demonstrates the usefulness of population genomics for evaluating the effects of past climatic changes and identifying conservation units for the conservation and management of threatened species. Our high-quality genome represents a valuable resource for future studies of the underlying molecular mechanisms of adaptive evolution and provides insight for further comparative genomic analysis with other Velloziaceae species.
      (© 2021 John Wiley & Sons Ltd.)
    • References:
      Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655-1664. https://doi.org/10.1101/gr.094052.109.
      Alioto, T., Blanco, E., Parra, G., & Guigó, R. (2018). Using GeneID to identify genes. Current Protocols in Bioinformatics, 64(1), e56. https://doi.org/10.1002/cpbi.56.
      Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
      APG III. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105-121. https://doi.org/10.1111/j.1095-8339.2009.00996.x.
      Birney, E., Clamp, M., & Durbin, R. (2004). GeneWise and genomewise. Genome Research, 14(5), 988-995. https://doi.org/10.1101/gr.1865504.
      Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., & Schneider, M. (2003). The SWISS-PROT protein KnowledgeBase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31(1), 365-370. https://doi.org/10.1093/nar/gkg095.
      Burge, C., & Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology, 268(1), 78-94. https://doi.org/10.1006/jmbi.1997.0951.
      Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M., & Buell, C. R. (2006). Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics, 7, 327. https://doi.org/10.1186/1471-2164-7-327.
      Chadburn, H. (2017). Acanthochlamys bracteata. The IUCN Red List of Threatened Species 2017: e.T22486366A22488478. http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22486366A22488478.en.
      Chen, J.-H., Huang, Y., Brachi, B., Yun, Q.-Z., Zhang, W., Lu, W., Li, H.-N., Li, W.-Q., Sun, X.-D., Wang, G.-Y., He, J., Zhou, Z., Chen, K.-Y., Ji, Y.-H., Shi, M.-M., Sun, W.-G., Yang, Y.-P., Zhang, R.-G., Abbott, R. J., & Sun, H. (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. https://doi.org/10.1038/s41467-019-13128-y.
      Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., & Smith, R. D. (2006). The Community Climate System Model Version 3 (CCSM3). Journal of Climate Version 3, 19(11), 2122-2143. https://doi.org/10.1175/JCLI3761.1.
      Costa, M.-C., Artur, M. A. S., Maia, J., Jonkheer, E., Derks, M. F. L., Nijveen, H., Williams, B., Mundree, S. G., Jiménez-Gómez, J. M., Hesselink, T., Schijlen, E. G. W. M., Ligterink, W., Oliver, M. J., Farrant, J. M., & Hilhorst, H. W. M. (2017). A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nature Plants, 3(4), 17038. https://doi.org/10.1038/nplants.2017.38.
      De Bie, T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: A computational tool for the study of gene family evolution. Bioinformatics, 22(10), 1269-1271. https://doi.org/10.1093/bioinformatics/btl097.
      Des Roches, S., Pendleton, L. H., Shapiro, B., & Palkovacs, E. P. (2021). Conserving intraspecific variation for nature’s contributions to people. Nature Ecology and Evolution, 5, 574-582. https://doi.org/10.1038/s41559-021-01403-5.
      Dimmer, E. C., Huntley, R. P., Alam-Faruque, Y., Sawford, T., O'Donovan, C., Martin, M. J., Bely, B., Browne, P., Mun Chan, W., Eberhardt, R., Gardner, M., Laiho, K., Legge, D., Magrane, M., Pichler, K., Poggioli, D., Sehra, H., Auchincloss, A., Axelsen, K., … Apweiler, R. (2012). The UniProt-GO Annotation database in 2011. Nucleic Acids Research, 40(Database issue), D565-D570. https://doi.org/10.1093/nar/gkr1048.
      Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
      Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry, 19, 11-15.
      Du, F. K., Hou, M., Wang, W. T., Mao, K. S., & Hampe, A. (2017). Phylogeography of Quercus aquifolioides provides novel insights into the Neogene history of a major global hotspot of plant diversity in south-west China. Journal of Biogeography, 44(2), 294-307. https://doi.org/10.1111/jbi.12836.
      Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356(6333), 92-95. https://doi.org/10.1126/science.aal3327.
      Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S., & Aiden, E. L. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Systems, 3(1), 99-101. https://doi.org/10.1016/j.cels.2015.07.012.
      Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S. P., Huntley, M. H., Eric, S. L., & Aiden, E. L. (2016). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems, 3(1), 95-98. https://doi.org/10.1016/j.cels.2016.07.002.
      Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113.
      Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16, 157. https://doi.org/10.1186/s13059-015-0721-2.
      Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. https://doi.org/10.1017/S0376892997000088.
      Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 27(9), 489-496. https://doi.org/10.1016/j.tree.2012.05.012.
      Gao, Y. D., Gao, X. F., & Harris, A. (2019). Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances. Frontiers in Plant Science, 10, 321. https://doi.org/10.3389/fpls.2019.00321.
      Gao, Z. Y., Li, Z. H., Lin, D. L., & Jin, X. H. (2021). Chromosome-scale genome assembly of the resurrection plant Acanthochlamys bracteata (Velloziaceae). Genome Biology and Evolution, 13(8), evab147. https://doi.org/10.1093/gbe/evab147.
      Givnish, T. J., Ames, M., McNeal, J. R., McKain, M. R., Roxanne Steele, P., dePamphilis, C. W., Graham, S. W., Chris Pires, J., Stevenson, D. W., Zomlefer, W. B., Briggs, B. G., Duvall, M. R., Moore, M. J., Michael Heaney, J., Soltis, D. E., Soltis, P. S., Thiele, K., & Leebens-Mack, J. H. (2010). Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales. Annals of the Missouri Botanical Garden, 97(4), 584-616. https://doi.org/10.3417/2010023.
      Givnish, T. J., Zuluaga, A., Spalink, D., Soto Gomez, M., Lam, V. K. Y., Saarela, J. M., Sass, C., Iles, W. J. D., de Sousa, D. J. L., Leebens-Mack, J., Chris Pires, J., Zomlefer, W. B., Gandolfo, M. A., Davis, J. I., Stevenson, D. W., dePamphilis, C., Specht, C. D., Graham, S. W., Barrett, C. F., & Ané, C. (2018). Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. American Journal of Botany, 105, 1188-1910. https://doi.org/10.1002/ajb2.1178.
      Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R., & Bateman, A. (2005). Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 33(Database issue), D121-D124. https://doi.org/10.1093/nar/gki081.
      Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology, 9(1), R7. https://doi.org/10.1186/gb-2008-9-1-r7.
      He, L., Wagner, N. D., & Hörandl, E. (2021). Restriction-site associated DNA sequencing data reveal a radiation of willow species (Salix L., Salicaceae) in the Hengduan Mountains and adjacent areas. Journal of Systematics and Evolution, 59(1), 44-57. https://doi.org/10.1111/jse.12593.
      Hoede, C., Arnoux, S., Moisset, M., Chaumier, T., Inizan, O., Jamilloux, V., & Quesneville, H. (2014). PASTEC: An automatic transposable element classification tool. PLoS One, 9(5), e91929. https://doi.org/10.1371/journal.pone.0091929.
      Hu, J., Fan, J. P., Sun, Z. Y., & Liu, S. L. (2020). NextPolish: A fast and efficient genome polishing tool for long-read assembly. Bioinformatics, 36(7), 2253-2255. https://doi.org/10.1093/bioinformatics/btz891.
      Jian, H. Y., Tang, K. X., & Sun, H. (2015). Phylogeography of Rosa soulieana (Rosaceae) in the Hengduan Mountains: Refugia and “melting” pots in the Quaternary climate oscillations. Plant Systematics and Evolution, 301(7), 1819-1830. https://doi.org/10.1007/s00606-015-1195-0.
      Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467. https://doi.org/10.1159/000084979.
      Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27.
      Kao, P. C. (1998). Confirmation of Acanthochlamydaceae, a new proposed monocotyledons family and its systematic position. Acta Botanica Yunnanica, 20(1), 23-31.
      Kao, P. C., & Kubitzki, K. (1998). Acanthochlamydaceae. In K. Kubitzki (Ed.), The families and genera of flowering plants, 3 (pp. 55-58). Springer.
      Kao, P. C., Tang, Y., & Guo, W. H. (1993). A cytological study on Acanthochlamys bracteata P. C. Kao (Acanthochlamyaceae). Acta Phytotaxonomica Sinica, 31(1), 42-44.
      Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O., & Grau, J. (2018). Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinformatics, 19(1), 189. https://doi.org/10.1186/s12859-018-2203-5.
      Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. https://doi.org/10.1038/nmeth.3317.
      Koonin, E. V., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Krylov, D. M., Makarova, K. S., Nikolskaya, A. N., Sridhar Rao, B., Rogozin, I. B., Smirnov, S., Sorokin, A. V., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., & Natale, D. A. (2004). A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 5(2), R7. https://doi.org/10.1186/gb-2004-5-2-r7.
      Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5, 59. https://doi.org/10.1186/1471-2105-5-59.
      Kumar, S., Jones, M., Koutsovoulos, G., Clarke, M., & Blaxter, M. (2013). Blobology: Exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Frontiers in Genetics, 4, 1-12. https://doi.org/10.3389/fgene.2013.00237.
      Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7), 1812-1819. https://doi.org/10.1093/molbev/msx116.
      Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324.
      Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature, 475(7357), 493-496. https://doi.org/10.1038/nature10231.
      Li, J. L., Milne, R. I., Ru, D. F., Miao, J. B., Tao, W. J., Zhang, L., & Mao, K. S. (2020). Allopatric divergence and hybridization within Cupressus chengiana (Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Molecular Ecology, 29(7), 1250-1266. https://doi.org/10.1111/mec.15407.
      Li, S.-F., Wang, J., Dong, R., Zhu, H.-W., Lan, L.-N., Zhang, Y.-L., Li, N., Deng, C.-L., & Gao, W.-J. (2020). Chromosome-level genome assembly, annotation and evolutionary analysis of the ornamental plant Asparagus setaceus. Horticulture Research, 7(1), 48. https://doi.org/10.1038/s41438-020-0271-y.
      Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., & Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950), 289-293. https://doi.org/10.1126/science.1181369.
      Liu, J., Möller, M., Provan, J., Gao, L. M., Poudel, R. C., & Li, D. Z. (2013). Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist, 199(4), 1093-1108. https://doi.org/10.1111/nph.12336.
      Lowe, T. M., & Eddy, S. R. (1997). TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5), 955-964. https://doi.org/10.1093/nar/25.5.955.
      Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26(8), 345-352. https://doi.org/10.1016/j.tig.2010.05.003.
      Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics, 20(16), 2878-2879. https://doi.org/10.1093/bioinformatics/bth315.
      Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., … Bryant, S. H. (2011). CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research, 39(Database issue), D225-D229. https://doi.org/10.1093/nar/gkq1189.
      Mello-Silva, R., Santos, D. Y. A. C., Salatino, M. L. F., Motta, L. B., Cattai, M. B., Sasaki, D., Lovo, J., Pita, P. B., Rocini, C., Rodrigues, C. D. N., Zarrei, M., & Chase, M. W. (2011). Five vicariant genera from Gondwana: The Velloziaceae as shown by molecules and morphology [corrected]. Annals of Botany, 108(1), 87-102. https://doi.org/10.1093/aob/mcr107.
      Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300.
      Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., & Bullock, J. M. (2015). Biodiversity and resilience of ecosystem functions. Trends in Ecology and Evolution, 30(11), 673-684. https://doi.org/10.1016/j.tree.2015.08.009.
      Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT. StringTie and Ballgown. Nature Protocols, 11(9), 1650-1667. https://doi.org/10.1038/nprot.2016.095.
      Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. https://doi.org/10.1038/nbt.3122.
      Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species’ geographic distributions. Ecological Modelling, 12, 231-259. https://doi.org/10.1371/journal.pone.0187602.
      Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genetics, 8(11), e1002967. https://doi.org/10.1371/journal.pgen.1002967.
      Price, A. L., Jones, N. C., & Pevzner, P. A. (2005). De novo identification of repeat families in large genomes. Bioinformatics, 21(Suppl. 1), i351-i358. https://doi.org/10.1093/bioinformatics/bti1018.
      Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). Plink: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795.
      R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
      Ren, G., Mateo, R. G., Conti, E., & Salamin, N. (2020). Population genetic structure and demographic history of Primula fasciculata in Southwest China. Frontiers in Plant Science, 11, 986. https://doi.org/10.3389/fpls.2020.00986.
      Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17, 155-158. https://doi.org/10.1038/s41592-019-0669-3.
      Salatino, A., Salatino, M. L. F., Mello-Silva, R., van Sluys, M. A., Giannasi, D. E., & Price, R. A. (2001). Phylogenetic inference in Velloziaceae using chloroplast trnL-F sequences. Systematic Botany, 26, 92-103. https://doi.org/10.1043/0363-6445-26.1.92.
      She, R., Chu, J. S. C., Wang, K., Pei, J., & Chen, N. (2009). genBlastA: Enabling BLAST to identify homologous gene sequences. Genome Research, 19(1), 143-149. https://doi.org/10.1101/gr.082081.108.
      Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. https://doi.org/10.1093/bioinformatics/btv351.
      Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033.
      Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics, 19(Suppl. 2), ii215-ii225. https://doi.org/10.1093/bioinformatics/btg1080.
      Sun, H., Zhang, J., Deng, T., & Boufford, D. E. (2017). Origins and evolution of plant diversity in the Hengduan Mountains. China. Plant Diversity, 39(4), 161-166. https://doi.org/10.1016/j.pld.2017.09.004.
      Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564-577. https://doi.org/10.1080/10635150701472164.
      Tang, S., Lomsadze, A., & Borodovsky, M. (2015). Identification of protein coding regions in RNA transcripts. Nucleic Acids Research, 43(12), e78. https://doi.org/10.1093/nar/gkv227.
      Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 25, 4.10.1-4.10.14. https://doi.org/10.1002/0471250953.bi0410s25.
      Vaser, R., Sović, I., Nagarajan, N., & Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research, 27(5), 737-746. https://doi.org/10.1101/gr.214270.116.
      Wang, X. H., Li, J., Zhang, L. M., He, Z. W., Mei, Q. M., Gong, X., & Jian, S. G. (2019). Population differentiation and demographic history of the Cycas taiwaniana complex (Cycadaceae) endemic to south China as indicated by DNA sequences and microsatellite markers. Frontiers in Genetics, 10, 1238. https://doi.org/10.3389/fgene.2019.01238.
      Wang, Y. H., Chen, J. M., Xu, C., Liu, X., Wang, Q. F., & Motley, T. J. (2010). Population genetic structure of an aquatic herb Batrachium bungei (Ranuculaceae) in the Hengduan Mountains of China. Aquatic Botany, 92(3), 221-225. https://doi.org/10.1016/j.aquabot.2009.12.004.
      Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMtools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607-611. https://doi.org/10.1111/j.1600-0587.2009.06142.x.
      Williams, K. J., Ford, A., Rosauer, D. F., Silva, N., Mittermeier, R. A., Bruce, C., & Margules, C. (2011). Forests of East Australia: The 35th biodiversity hotspot. In F. E. Zachos, & J. C. Habel (Eds.), Biodiversity Hotspots (pp. 295-310). Springer.
      Wolff, J., Rabbani, L., Gilsbach, R., Richard, G., Manke, T., Backofen, R., & Grüning, A. G. (2020). Galaxy HiCExplorer 3: A web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Research, 48(W1), W177-W184. https://doi.org/10.1093/nar/gkaa220.
      Xu, T., Abbott, R. J., Milne, R. I., Mao, K., Du, F. K., Wu, G., Ciren, Z., Miehe, G., & Liu, J. (2010). Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evolutionary Biology, 10(1), 194. https://doi.org/10.1186/1471-2148-10-194.
      Xu, Z., & Wang, H. (2007). LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 35(Web Server), W265-W268.
      Yang, Z. H. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586-1591. https://doi.org/10.1093/molbev/msm088.
      Zheng, B. X., Xu, Q. Q., & Shen, Y. P. (2002). The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: Review and speculation. Quaternary International, 97-98(19), 93-101. https://doi.org/10.1016/S1040-6182(02)00054-X.
    • Grant Information:
      2019HJ2096001006 Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China; 2019QZKK0502 Second Tibetan Plateau Scientific Expedition and Research (STEP) programme; 2020YFE0203200 China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services
    • Contributed Indexing:
      Keywords: Acanthochlamys bracteata; Hi-C; gene flow; population genomics; threatened species
    • Publication Date:
      Date Created: 20211127 Date Completed: 20220406 Latest Revision: 20220406
    • Publication Date:
      20240104
    • Accession Number:
      10.1111/1755-0998.13562
    • Accession Number:
      34837470