The Crosstalk Between Neurons and Glia in Methamphetamine-Induced Neuroinflammation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Shi S;Shi S; Chen T; Chen T; Zhao M; Zhao M; Zhao M; Zhao M
  • Source:
    Neurochemical research [Neurochem Res] 2022 Apr; Vol. 47 (4), pp. 872-884. Date of Electronic Publication: 2022 Jan 04.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7613461 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6903 (Electronic) Linking ISSN: 03643190 NLM ISO Abbreviation: Neurochem Res Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
      Original Publication: New York, Plenum Press
    • Subject Terms:
    • Abstract:
      Methamphetamine (METH), an illicit psycho-stimulant, is widely known as an addictive drug that may cause neurotoxic effects. Previous researches on METH abuse have mainly focused on neurotransmitters, such as dopamine and glutamate. However, there is growing evidence that neuroinflammation also plays an important role in the etiology and pathophysiology of brain dysfunction induced by METH abuse. This has cast a spotlight on the research of microglia and astrocyte, which are critical mediators of neuroimmune pathology in recent years. In the central nervous system (CNS) immunity, abnormalities of the microglia and astrocytes have been observed in METH abusers from both postmortem and preclinical studies. The bidirectional communication between neurons and glia is essential for the homeostasis and biological function of the CNS while activation of glia induces the release of cytokines and chemokines during pathological conditions, which will affect the neuron-glia interactions and lead to adverse behavioral consequences. However, the underlying mechanisms of interaction between neurons and glia in METH-induced neuroinflammation remain elusive. Notably, discovering and further understanding glial activity and functions, as well as the crosstalk between neurons and glia may help to explain the pathogenesis of METH abuse and behavioral changes in abusers. In this review, we will discuss the current understanding of the crosstalk between neurons and glia in METH-induced neuroinflammation. We also review the existing microglia-astrocyte interaction under METH exposure. We hope the present review will lead the way for more studies on the development of new therapeutic strategies for METH abuse in the near future.
      (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      UNODC (2021) World Drug Report 2021. United Nations, New York.
      North A, Swant J, Salvatore MF, Gamble-George J, Prins P, Butler B, Mittal MK, Heltsley R, Clark JT, Khoshbouei H (2013) Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit. Synapse 67:245–257. (PMID: 23280858)
      Rusyniak DE (2013) Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin N Am 36:261–275.
      Liang QD, Yuan TF, Cao XY, He H, Yang JM, Yuan JJ (2019) Assessing the severity of methamphetamine use disorder beyond the subjective craving report: the role of an attention bias test. Gen Psychiatry 32(2):e100019.
      Sambo DO, Lin M, Owens A, Lebowitz JJ, Richardson B, Jagnarine DA, Shetty M, Rodriquez M, Alonge T, Ali M, Katz J, Yan L, Febo M, Henry LK, Bruijnzeel AW, Daws L, Khoshbouei H (2017) The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat Commun 8:2228. (PMID: 292633185738444)
      Saha K, Sambo D, Richardson BD, Lin LM, Butler B, Villarroel L, Khoshbouei H (2014) Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing. J Biol Chem 289:22246–22257. (PMID: 249625774139236)
      Zhang Y, Loonam TM, Noailles PA, Angulo JA (2001) Comparison of cocaine- and methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Ann NY Acad Sci 937:93–120. (PMID: 11458542)
      Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128. (PMID: 11252991)
      Chen TZ, Tan HY, Lei HT, Su H, Zhao M (2020) Proton magnetic resonance spectroscopy in substance use disorder: recent advances and future clinical applications. Sci China Inf Sci 63(7):170101.
      Lin M, Sambo D, Khoshbouei H (2016) Methamphetamine regulation of firing activity of dopamine neurons. J Neurosci 36:10376–10391. (PMID: 277079725050330)
      Seiden LS, Fischman MW, Schuster CR (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1:215–219. (PMID: 828106)
      Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160. (PMID: 7350950)
      Volz TJ, Hanson GR, Fleckenstein AE (2007) The role of the plasmalemmal dopamine and vesicular monoamine transporters in methamphetamine-induced dopaminergic deficits. J Neurochem 101:883–888. (PMID: 17250674)
      Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788. (PMID: 14519657)
      Marshall JF, Belcher AM, Feinstein EM, O’Dell SJ (2007) Methamphetamine-induced neural and cognitive changes in rodents. Addiction 102(Suppl 1):61–69. (PMID: 17493054)
      Turowski P, Kenny BA (2015) The blood–brain barrier and methamphetamine: open sesame? Front Neurosci 9:156. (PMID: 259998074419855)
      Shaftel SS, Griffin WS, O’Banion MK (2008) The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflamm 5:7.
      Yang QQ, Zhou JW (2019) Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67:1017–1035. (PMID: 30548343)
      Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535. (PMID: 17904651)
      Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, Loftis JM (2019) Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 179:34–42. (PMID: 306957006637953)
      Ahearn OC, Watson MN, Rawls SM (2021) Chemokines, cytokines and substance use disorders. Drug Alcohol Depend 220:108511. (PMID: 334656067889725)
      Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC (2018) Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: involvement in oxidative stress, neuroinflammation, and pro-apoptosis—a review. Neurochem Res 43:66–78. (PMID: 28589520)
      Shafahi M, Vaezi G, Shajiee H, Sharafi S, Khaksari M (2018) Crocin Inhibits apoptosis and astrogliosis of hippocampus neurons against methamphetamine neurotoxicity via antioxidant and anti-inflammatory mechanisms. Neurochem Res 43:2252–2259. (PMID: 30259275)
      Krasnova IN, Justinova Z, Cadet JL (2016) Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology 233:1945–1962. (PMID: 268730805627363)
      Coller JK, Hutchinson MR (2012) Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 134:219–245. (PMID: 22316499)
      Matejuk A, Ransohoff RM (2020) Crosstalk between astrocytes and microglia: an overview. Front Immunol 11:1416. (PMID: 327655017378357)
      Jia J, Cheng J, Wang C, Zhen X (2018) Sigma-1 receptor-modulated neuroinflammation in neurological diseases. Front Cell Neurosci 12:314. (PMID: 302942616158303)
      Vargas AM, Rivera-Rodriguez DE, Martinez LR (2020) Methamphetamine alters the TLR4 signaling pathway, NF-kappaB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol Immunol 121:159–166. (PMID: 322225868079139)
      Zhang Y, Lv X, Bai Y, Zhu X, Wu X, Chao J, Duan M, Buch S, Chen L, Yao H (2015) Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. J Neuroinflamm 12:29.
      Canedo T, Portugal CC, Socodato R, Almeida TO, Terceiro AF, Bravo J, Silva AI, Magalhaes JD, Guerra-Gomes S, Oliveira JF, Sousa N, Magalhaes A, Relvas JB, Summavielle T (2021) Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology 46:2358–2370. (PMID: 34400780)
      Frank MG, Adhikary S, Sobesky JL, Weber MD, Watkins LR, Maier SF (2016) The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain Behav Immun 51:99–108. (PMID: 26254235)
      Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179:292–311. (PMID: 31585077)
      Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gomez A, Yuste JE, Campuzano CM, de Pablos V, Fernandez-Villalba E, Herrero MT (2012) ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep 2:809. (PMID: 231398613492875)
      Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. (PMID: 244714315001846)
      Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. (PMID: 27959620)
      Koss K, Churchward MA, Tsui C, Todd KG (2019) In vitro priming and hyper-activation of brain microglia: an assessment of phenotypes. Mol Neurobiol 56:6409–6425. (PMID: 30805836)
      Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e1217.
      Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smith ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Chen H, Tjon E, Mazaheri F, Hartmann K, Madi A, Ulrich JD, Glatzel M, Worthmann A, Heeren J, Budnik B, Lemere C, Ikezu T, Heppner FL, Litvak V, Holtzman DM, Lassmann H, Weiner HL, Ochando J, Haass C, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566-581.e569. (PMID: 2893066328930663)
      Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081. (PMID: 2977559129775591)
      Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. (PMID: 2001206820012068)
      Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321. (PMID: 235950144431630)
      Bernardinelli Y, Randall J, Janett E, Nikonenko I, Konig S, Jones EV, Flores CE, Murai KK, Bochet CG, Holtmaat A, Muller D (2014) Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 24:1679–1688. (PMID: 25042585)
      Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031. (PMID: 16816144)
      Bezzi P, Volterra A (2001) A neuron–glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394. (PMID: 11399439)
      Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739. (PMID: 245596694107238)
      Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. (PMID: 280994145404890)
      Lee HT, Lee KI, Chen CH, Lee TS (2019) Genetic deletion of soluble epoxide hydrolase delays the progression of Alzheimer’s disease. J Neuroinflamm 16:267.
      Wheeler MA, Jaronen M, Covacu R, Zandee SEJ, Scalisi G, Rothhammer V, Tjon EC, Chao CC, Kenison JE, Blain M, Rao VTS, Hewson P, Barroso A, Gutierrez-Vazquez C, Prat A, Antel JP, Hauser R, Quintana FJ (2019) Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176:581-596.e518. (PMID: 306617536440749)
      Blanco-Suarez E, Caldwell AL, Allen NJ (2017) Role of astrocyte–synapse interactions in CNS disorders. J Physiol 595:1903–1916. (PMID: 27381164)
      Corty MM, Freeman MR (2013) Cell biology in neuroscience: architects in neural circuit design: glia control neuron numbers and connectivity. J Cell Biol 203:395–405. (PMID: 242176173824021)
      Druart M, Le Magueresse C (2019) Emerging roles of complement in psychiatric disorders. Front Psychiatry 10:573. (PMID: 314969606712161)
      Neniskyte U, Gross CT (2017) Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci 18:658–670. (PMID: 2893194428931944)
      van Loo KM, Martens GJ (2007) Genetic and environmental factors in complex neurodevelopmental disorders. Curr Genomics 8:429–444. (PMID: 194124162647153)
      Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM (2019) Synaptic elimination in neurological disorders. Curr Neuropharmacol 17:1071–1095. (PMID: 311619817052824)
      Liu Y, Chu JMT, Yan T, Zhang Y, Chen Y, Chang RCC, Wong GTC (2020) Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer’s disease mice. J Neuroinflamm 17:4.
      Marinelli S, Basilico B, Marrone MC, Ragozzino D (2019) Microglia–neuron crosstalk: signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 94:138–151. (PMID: 31112798)
      Mulica P, Grunewald A, Pereira SL (2021) Astrocyte–neuron metabolic crosstalk in neurodegeneration: a mitochondrial perspective. Front Endocrinol (Lausanne) 12:668517.
      Yang L, Zhou Y, Jia H, Qi Y, Tu S, Shao A (2020) Affective immunology: the crosstalk between microglia and astrocytes plays key role? Front Immunol 11:1818. (PMID: 329737587468391)
      Jha MK, Jo M, Kim JH, Suk K (2019) Microglia–astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25:227–240. (PMID: 29931997)
      Paolicelli RC, Bergamini G, Rajendran L (2019) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 405:148–157. (PMID: 29660443)
      Liao K, Niu F, Hu G, Yang L, Dallon B, Villarreal D, Buch S (2020) Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J Extracell Vesicles 10:e12027. (PMID: 333044797710131)
      Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J (2013) Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 48:690–701. (PMID: 236132144079114)
      Rocha SM, Cristovao AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47:407–415. (PMID: 2257977222579772)
      Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109:E197-205. (PMID: 22167804)
      Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710. (PMID: 11426226)
      Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 97:37–44. (PMID: 2389219923892199)
      Zhang F, Zhong R, Li S, Fu Z, Cheng C, Cai H, Le W (2017) Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-kappaB signaling in Alzheimer’s disease mice and wild-type littermates. Front Aging Neurosci 9:282. (PMID: 288906955574879)
      Shah A, Silverstein PS, Singh DP, Kumar A (2012) Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-kappaB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflamm 9:52.
      Du SH, Qiao DF, Chen CX, Chen S, Liu C, Lin Z, Wang H, Xie WB (2017) Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes. Front Mol Neurosci 10:409. (PMID: 293118025733023)
      Robson MJ, Turner RC, Naser ZJ, McCurdy CR, O’Callaghan JP, Huber JD, Matsumoto RR (2014) SN79, a sigma receptor antagonist, attenuates methamphetamine-induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation. Exp Neurol 254:180–189. (PMID: 245085584241368)
      Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen D (2016) Microglial TNF-alpha suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90:483–491. (PMID: 271124964860141)
      Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9. (PMID: 14751757)
      Xu E, Liu J, Liu H, Wang X, Xiong H (2018) Inflammasome activation by methamphetamine potentiates lipopolysaccharide stimulation of IL-1beta production in microglia. J Neuroimmune Pharmacol 13:237–253. (PMID: 294928246430126)
      Wang B, Chen T, Wang J, Jia Y, Ren H, Wu F, Hu M, Chen Y (2018) Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia. Int Immunopharmacol 56:168–178. (PMID: 29414647)
      Wan F, Zang S, Yu G, Xiao H, Wang J, Tang J (2017) Ginkgolide B suppresses methamphetamine-induced microglial activation through TLR4-NF-kappaB signaling pathway in BV2 cells. Neurochem Res 42:2881–2891. (PMID: 28712049)
      Yang T, Zang S, Wang Y, Zhu Y, Jiang L, Chen X, Zhang X, Cheng J, Gao R, Xiao H, Wang J (2020) Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol Lett 333:150–158. (PMID: 32768653)
      Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-B interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059. (PMID: 30576920)
      Jumnongprakhon P, Govitrapong P, Tocharus C, Pinkaew D, Tocharus J (2015) Melatonin protects methamphetamine-induced neuroinflammation through NF-kappaB and Nrf2 pathways in glioma cell line. Neurochem Res 40:1448–1456. (PMID: 25998888)
      Su TP, Hayashi T (2003) Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 10:2073–2080. (PMID: 12871086)
      Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR (2005) Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 49:638–645. (PMID: 15939443)
      Shen K, Zhang Y, Lv X, Chen X, Zhou R, Nguyen LK, Wu X, Yao H (2016) Molecular mechanisms involving sigma-1 receptor in cell apoptosis of BV-2 microglial cells induced by methamphetamine. CNS Neurol Disord Drug Targets 15:857–865. (PMID: 27189473)
      Lai JL, Liu YH, Liu C, Qi MP, Liu RN, Zhu XF, Zhou QG, Chen YY, Guo AZ, Hu CM (2017) Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation 40:1–12. (PMID: 27718095)
      Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H (2017) Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep 7:11540. (PMID: 2891253528912535)
      Wang X, Northcutt AL, Cochran TA, Zhang X, Fabisiak TJ, Haas ME, Amat J, Li H, Rice KC, Maier SF, Bachtell RK, Hutchinson MR, Watkins LR (2019) Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem Neurosci 10:3622–3634. (PMID: 31282647)
      Narita M, Miyatake M, Narita M, Shibasaki M, Shindo K, Nakamura A, Kuzumaki N, Nagumo Y, Suzuki T (2006) Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology 31:2476–2488. (PMID: 16407899)
      Zhang Y, Zhu T, Zhang X, Chao J, Hu G, Yao H (2015) Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes. J Neuroinflamm 12:156.
      Du SH, Zhang W, Yue X, Luo XQ, Tan XH, Liu C, Qiao DF, Wang H (2018) Role of CXCR1 and interleukin-8 in methamphetamine-induced neuronal apoptosis. Front Cell Neurosci 12:230. (PMID: 301231106085841)
      Golembiowska K, Konieczny J, Wolfarth S, Ossowska K (2003) Neuroprotective action of MPEP, a selective mGluR5 antagonist, in methamphetamine-induced dopaminergic neurotoxicity is associated with a decrease in dopamine outflow and inhibition of hyperthermia in rats. Neuropharmacology 45:484–492. (PMID: 12907309)
      Lloyd SA, Corkill B, Bruster MC, Roberts RL, Shanks RA (2017) Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J Chem Neuroanat 82:5–11. (PMID: 28323108)
      LaVoie MJ, Card JP, Hastings TG (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 187:47–57. (PMID: 15081587)
      Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7. (PMID: 15163680)
      Zhang L, Kitaichi K, Fujimoto Y, Nakayama H, Shimizu E, Iyo M, Hashimoto K (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 30:1381–1393. (PMID: 16839653)
      Fernandes NC, Sriram U, Gofman L, Cenna JM, Ramirez SH, Potula R (2016) Methamphetamine alters microglial immune function through P2X7R signaling. J Neuroinflamm 13:91.
      Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P (2010) Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 48:347–352. (PMID: 20374443)
      Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann NY Acad Sci 1074:31–41. (PMID: 17105901)
      Thomas DM, Francescutti-Verbeem DM, Kuhn DM (2008) The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. J Neurochem 105:605–616. (PMID: 18088364)
      Welser-Alves JV, Milner R (2013) Microglia are the major source of TNF-alpha and TGF-beta1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int 63:47–53. (PMID: 23619393)
      Goncalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP (2008) Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann NY Acad Sci 1139:103–111. (PMID: 18991854)
      Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH, Seto A, Yoshimura M, Kitaichi K, Hasegawa T, Saito K, Yamada Y, Seishima M, Sekikawa K, Kim HC, Nabeshima T (2004) Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 24:2212–2225. (PMID: 149990726730419)
      Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure–function relationship(s). Microsc Res Tech 50:184–195. (PMID: 10891884)
      Coelho-Santos V, Leitao RA, Cardoso FL, Palmela I, Rito M, Barbosa M, Brito MA, Fontes-Ribeiro CA, Silva AP (2015) The TNF-alpha/NF-kappaB signaling pathway has a key role in methamphetamine-induced blood–brain barrier dysfunction. J Cereb Blood Flow Metab 35:1260–1271. (PMID: 258992994528012)
      Liu X, Silverstein PS, Singh V, Shah A, Qureshi N, Kumar A (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-alpha and IL-1beta in human macrophages through common signaling pathways. PLoS ONE 7:e33822. (PMID: 224794533315580)
      Niwa M, Nitta A, Yamada Y, Nakajima A, Saito K, Seishima M, Shen L, Noda Y, Furukawa S, Nabeshima T (2007) An inducer for glial cell line-derived neurotrophic factor and tumor necrosis factor-alpha protects against methamphetamine-induced rewarding effects and sensitization. Biol Psychiatry 61:890–901. (PMID: 17046726)
      Park JH, Seo YH, Jang JH, Jeong CH, Lee S, Park B (2017) Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J Neuroinflamm 14:240.
      Chamera K, Trojan E, Szuster-Gluszczak M, Basta-Kaim A (2020) The potential role of dysfunctions in neuron–microglia communication in the pathogenesis of brain disorders. Curr Neuropharmacol 18:408–430. (PMID: 317293017457436)
      Zhao X, Li J, Sun H (2019) CD200-CD200R interaction: an important regulator after stroke. Front Neurosci 13:840. (PMID: 314401376693438)
      Frank MG, Fonken LK, Annis JL, Watkins LR, Maier SF (2018) Stress disinhibits microglia via down-regulation of CD200R: a mechanism of neuroinflammatory priming. Brain Behav Immun 69:62–73. (PMID: 29104062)
      Sheridan GK, Murphy KJ (2013) Neuron–glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 3:130181. (PMID: 243527393877844)
      Suzuki M, El-Hage N, Zou S, Hahn YK, Sorrell ME, Sturgill JL, Conrad DH, Knapp PE, Hauser KF (2011) Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Mol Neurodegener 6:78. (PMID: 220930903287119)
      Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia–neuron communication in health and disease. Front Cell Neurosci 12:323. (PMID: 303193626170615)
      Cisneros IE, Ghorpade A (2012) HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 10:392–406. (PMID: 225913633580828)
      Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, Miller GW (2008) Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 106:2205–2217. (PMID: 186437954086661)
      Scofield MD (2018) Exploring the role of astroglial glutamate release and association with synapses in neuronal function and behavior. Biol Psychiatry 84:778–786. (PMID: 29258653)
      Kim R, Sepulveda-Orengo MT, Healey KL, Williams EA, Reissner KJ (2018) Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal. Neuropharmacology 128:1–10. (PMID: 28919080)
      Knackstedt LA, LaRowe S, Mardikian P, Malcolm R, Upadhyaya H, Hedden S, Markou A, Kalivas PW (2009) The role of cystine-glutamate exchange in nicotine dependence in rats and humans. Biol Psychiatry 65:841–845. (PMID: 19103434)
      Siemsen BM, Reichel CM, Leong KC, Garcia-Keller C, Gipson CD, Spencer S, McFaddin JA, Hooker KN, Kalivas PW, Scofield MD (2019) Effects of methamphetamine self-administration and extinction on astrocyte structure and function in the nucleus accumbens core. Neuroscience 406:528–541. (PMID: 30926546)
      Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108:608–622. (PMID: 328984757704785)
      Chen X, Qiu F, Zhao X, Lu J, Tan X, Xu J, Chen C, Zhang F, Liu C, Qiao D, Wang H (2020) Astrocyte-derived lipocalin-2 is involved in mitochondrion-related neuronal apoptosis induced by methamphetamine. ACS Chem Neurosci 11:1102–1116. (PMID: 32186847)
      Mahmoudiasl GR, Abbaszadeh HA, Rezaei-Tavirani M, Abdollahifar MA, Sadeghi Y, Khoramgah MS, Niknazar S, Darabi S (2019) Postmortem study of molecular and histological changes in the CA1 hippocampal region of chronic methamphetamine user. Iran J Pharm Res 18:2067–2082. (PMID: 321848707059073)
      Yan Y, Nitta A, Koseki T, Yamada K, Nabeshima T (2012) Dissociable role of tumor necrosis factor alpha gene deletion in methamphetamine self-administration and cue-induced relapsing behavior in mice. Psychopharmacology 221:427–436. (PMID: 22160137)
    • Grant Information:
      81771436 National Nature Science Foundation; 82130041 National Nature Science Foundation; 13DZ2260500 Shanghai Key Laboratory of Psychotic Disorders; 2018SHZDZX05 Shanghai Municipal Science and Technology Major Project; 19MC1911100 Shanghai Clinical Research Center for Mental Health; SHDC2020CR3045B Shanghai Shen Kang Hospital Development Center; 19DZ2255200 Shanghai Intelligent Engineering Technology Research Center for Addiction and Rehabilitation
    • Contributed Indexing:
      Keywords: Astrocytes; Methamphetamine; Microglia; Neuroinflammation
    • Accession Number:
      0 (Central Nervous System Stimulants)
      44RAL3456C (Methamphetamine)
    • Publication Date:
      Date Created: 20220104 Date Completed: 20220331 Latest Revision: 20220401
    • Publication Date:
      20240104
    • Accession Number:
      10.1007/s11064-021-03513-9
    • Accession Number:
      34982394