An in silico study to unveil potential drugs and vaccine chimera for HBV capsid assembly protein: combined molecular docking and dynamics simulation approach.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9806569 Publication Model: Electronic Cited Medium: Internet ISSN: 0948-5023 (Electronic) Linking ISSN: 09485023 NLM ISO Abbreviation: J Mol Model Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer, c1996-
    • Subject Terms:
    • Abstract:
      Humans are a major reservoir of the hepatitis B virus (HBV), therefore promising treatment and control vaccination strategies are needed to eradicate the virus. Though promising drugs and vaccines are available against HBV, still efforts are required to enrich the therapy options. Herein, the HBV assembly protein was explored to identify novel targets for future use against HBV. Computer-aided drug designing and immune-informatics techniques were employed for the identification of putative inhibitors and vaccine ensemble against HBV using capsid assembly protein. The identified drug molecule binds with high affinity to the active pocket of the protein, and several epitopes are scanned in the protein sequence. The drug molecule, besides being a good putative inhibitor, has acceptable drug-like properties. A multi-epitope vaccine is also constructed to overcome the limitations of weakly immunogenic epitopes. In contrast to the MHC II level, the set of predicted epitopes has been recognized to interact with significant numbers of HLA alleles of MHC I. Selected epitopes are extremely virulent, antigenic, nontoxic, nonallergic, have suitable affinity to bind with the prevailing DRB*0101 allele, and also spectacle 86% mediocre population coverage. A multi-epitope peptide-based vaccine chimera having 73 amino acids was designed. It emerged as substantially immunogenic, thermally stable, robust in producing cellular as well as humoral immune responses, and had competent physicochemical properties to analyze in vitro and in vivo studies. The capsid assembly protein is a in more stable nature in the presence of the drug molecule compared to the TLR3 receptor in the vaccine presence. These particulars were confirmed by exposing the docked molecules to absolute and relative binding free energy approaches of MMGBSA/PBSA. The purpose to investigate the interactions between the vaccine and a representative TLR3 immune receptor can reveal the intermolecular affinity and possible presentation mechanism of the vaccine by TLR3 to the host immune system. It was revealed that the vaccine is showing a very good affinity of binding for the TLR3 and forming a network of hydrophobic and hydrophilic interactions. Overall, the findings of this study are promising and might be useful for further experimental validations.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Revill PA, Chisari FV, Block JM et al (2019) A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol 4:545–558. https://doi.org/10.1016/S2468-1253(19)30119-0. (PMID: 10.1016/S2468-1253(19)30119-0309816866732795)
      Stray SJ, Zlotnick A (2006) BAY 41–4109 has multiple effects on hepatitis B virus capsid assembly. Journal of Molecular Recognition: An Interdisciplinary Journal 19:542–548. (PMID: 10.1002/jmr.801)
      Rehermann B, Nascimbeni M (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5:215–229. https://doi.org/10.1038/nri1573. (PMID: 10.1038/nri157315738952)
      Dehesa-Violante M, Nuñez-Nateras R (2007) Epidemiology of hepatitis virus B and C. Arch Med Res 38:606–611. https://doi.org/10.1016/j.arcmed.2007.03.001. (PMID: 10.1016/j.arcmed.2007.03.00117613351)
      Grotjohann T, Testa I, Reuss M et al (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells. Elife 1:e00248. (PMID: 10.7554/eLife.00248)
      Midori K, Katsuro K (1984) Complete nucleotide sequence of hepatitis B virus DNA of subtype adr and its conserved gene organization. Gene 30:227–232. https://doi.org/10.1016/0378-1119(84)90124-0. (PMID: 10.1016/0378-1119(84)90124-0)
      Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A (2012) Virus strategies for passing the nuclear envelope barrier. Nucleus 3:526–539. https://doi.org/10.4161/nucl.21979. (PMID: 10.4161/nucl.21979229290563515536)
      Kang J-A, Kim S, Park M et al (2019) Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly. Nat Commun 10:2184. https://doi.org/10.1038/s41467-019-10200-5. (PMID: 10.1038/s41467-019-10200-5310977166522524)
      Pham EA, Perumpail RB, Fram BJ et al (2016) Future therapy for hepatitis B virus: role of immunomodulators. Curr Hepatology Rep 15:237–244. https://doi.org/10.1007/s11901-016-0315-9. (PMID: 10.1007/s11901-016-0315-9)
      Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363-367. https://doi.org/10.1093/nar/gki481. (PMID: 10.1093/nar/gki481159804901160241)
      Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69:139–159. https://doi.org/10.1002/prot.21495. (PMID: 10.1002/prot.2149517598144)
      Biovia DS (2017) Discovery studio visualizer. San Diego, CA, USA 936:.
      Case D, Ben-Shalom I, Brozell S, et al AMBER 18; 2018. University of California, San Francisco.
      Case DA, Babin V, Berryman JT et al (2014) The FF14SB force field. Amber 14:29–31.
      Kang J-A, Kim S, Park M, et al (2019) Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly. Nat Commun 10:. https://doi.org/10.1038/s41467-019-10200-5.
      Hossain T, Kamruzzaman M, Choudhury TZ, et al (2017) Application of the subtractive genomics and molecular docking analysis for the identification of novel putative drug targets against Salmonella enterica subsp. enterica serovar Poona. BioMed Research International 2017:1–9. https://doi.org/10.1155/2017/3783714.
      Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084. (PMID: 10.1002/jcc.20084)
      Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29:221–222. (PMID: 10.1093/nar/29.1.221)
      Vita R, Mahajan S, Overton JA et al (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343. (PMID: 10.1093/nar/gky1006)
      Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. (PMID: 10.1093/nar/gkx346)
      Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32:511–517. (PMID: 10.1093/bioinformatics/btv639)
      Wang P, Sidney J, Kim Y et al (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC bioinformatics 11:568. (PMID: 10.1186/1471-2105-11-568)
      Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: a server for quantitative prediction of peptide–MHC binding. Nucleic Acids Res 31:3621–3624. (PMID: 10.1093/nar/gkg510)
      Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9:1–12. (PMID: 10.1186/1471-2105-9-1)
      Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4. (PMID: 10.1186/1471-2105-8-4)
      Dimitrov I, Flower DR, Doytchinova I (2013) AllerTOP-a server for in silico prediction of allergens. In: BMC bioinformatics. BioMed Central, pp 1–9.
      Gupta S, Kapoor P, Chaudhary K, et al (2015) Peptide toxicity prediction. In: Computational Peptidology. Springer, pp 143–157.
      Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33:W72–W76. (PMID: 10.1093/nar/gki396)
      Giardine B, Riemer C, Hardison RC et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455. (PMID: 10.1101/gr.4086505)
      Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41:W384–W388. (PMID: 10.1093/nar/gkt458)
      Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916. (PMID: 10.1002/pro.556002091684012352142462)
      Eisenberg D, Lüthy R, Bowie JU (1997) [20] VERIFY3D: assessment of protein models with three-dimensional profiles. In: Methods in enzymology. Elsevier, pp 396–404.
      Craig DB, Dombkowski AA (2013) Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics 14:1–7. (PMID: 10.1186/1471-2105-14-S19-S1)
      Grote A, Hiller K, Scheer M et al (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531. (PMID: 10.1093/nar/gki376)
      Thomsen M, Lundegaard C, Buus S et al (2013) MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics 65:655–665. https://doi.org/10.1007/s00251-013-0714-9. (PMID: 10.1007/s00251-013-0714-9237752233750724)
      Ahmad S, Raza S, Uddin R, Azam SS (2018) Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: acinetobacter baumannii. J Mol Graph Model 82:74–92. https://doi.org/10.1016/j.jmgm.2018.04.005. (PMID: 10.1016/j.jmgm.2018.04.00529705560)
      Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13. https://doi.org/10.1038/srep42717. (PMID: 10.1038/srep42717)
      Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. (PMID: 10.1021/acs.jctc.5b00255)
      Case DA, Cheatham TE III, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. (PMID: 10.1002/jcc.20290)
      Kerrigan JE (2009) AMBER 10.0 introductory tutorial.
      Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. (PMID: 10.1002/jcc.20035)
      Kräutler V, Van Gunsteren WF, Hünenberger PH (2001) A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22:501–508. (PMID: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V)
      Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. (PMID: 10.1021/ct400341p)
      Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. (PMID: 10.1002/jcc.20084)
      Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. (PMID: 10.1016/0263-7855(96)00018-5)
      Ahmad S, Raza S, Uddin R, Azam SS (2017) Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. J Mol Graph Model 77:72–85. https://doi.org/10.1016/j.jmgm.2017.07.024. (PMID: 10.1016/j.jmgm.2017.07.02428843462)
      Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA (2017) Fundamentals and methods for T-and B-cell epitope prediction. Journal of immunology research 2017:.
      Dhanda SK, Vir P, Raghava GP (2013) Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 8:30. (PMID: 10.1186/1745-6150-8-30)
      Naz K, Naz A, Ashraf ST et al (2019) PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics 20:123. (PMID: 10.1186/s12859-019-2713-9)
      Hassan A, Naz A, Obaid A et al (2016) Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics 17:732. (PMID: 10.1186/s12864-016-2951-4)
      Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209. (PMID: 10.1093/nar/gkl343)
      Schmidt ME, Varga SM (2018) The CD8 T cell response to respiratory virus infections. Front Immunol 9:678. (PMID: 10.3389/fimmu.2018.00678)
      Bijker MS, Melief CJM, Offringa R, Van Der Burg SH (2007) Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 6:591–603. (PMID: 10.1586/14760584.6.4.591)
      ProtParam E (2017) ExPASy-ProtParam tool.
      Naz A, Awan FM, Obaid A et al (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect Genet Evol 32:280–291. https://doi.org/10.1016/j.meegid.2015.03.027. (PMID: 10.1016/j.meegid.2015.03.02725818402)
      Barh D, Barve N, Gupta K et al (2013) Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by piper betel derived compounds. PLoS ONE 8:e52773. https://doi.org/10.1371/journal.pone.0052773. (PMID: 10.1371/journal.pone.0052773233828223559646)
      Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. (PMID: 10.1016/0022-2836(82)90515-0)
      Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186. https://doi.org/10.1126/science.3018930. (PMID: 10.1126/science.30189303018930)
      Chauhan V, Rungta T, Goyal K, Singh MP (2019) Designing a multi-epitope based vaccine to combat Kaposi sarcoma utilizing immunoinformatics approach. Sci Rep 9:2517. (PMID: 10.1038/s41598-019-39299-8)
    • Contributed Indexing:
      Keywords: Binding free energies; Capsid assembly protein; Docking; Drug; Hepatitis B virus; Molecular dynamics simulation; Vaccine
    • Accession Number:
      0 (Antiviral Agents)
      0 (Capsid Proteins)
      0 (Epitopes, T-Lymphocyte)
      0 (Hepatitis B Vaccines)
      0 (Ligands)
    • Publication Date:
      Date Created: 20220203 Date Completed: 20220330 Latest Revision: 20220330
    • Publication Date:
      20240104
    • Accession Number:
      10.1007/s00894-022-05042-w
    • Accession Number:
      35112241