Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
      (© 2022. The Author(s).)
    • References:
      de Bruijn, M. & Dzierzak, E. Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 129, 2061–2069 (2017). (PMID: 2817927610.1182/blood-2016-12-689109)
      Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211–4219 (2004). (PMID: 1515617510.1038/sj.onc.1207670)
      Gao, L. et al. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2–9 (2018). (PMID: 30391350649445710.1016/j.exphem.2018.10.009)
      Yzaguirre, A. D., de Bruijn, M. F. & Speck, N. A. The role of Runx1 in embryonic blood cell formation. Adv. Exp. Med. Biol. 962, 47–64 (2017). (PMID: 28299650581369510.1007/978-981-10-3233-2_4)
      Sood, R., Kamikubo, Y. & Liu, P. Role of RUNX1 in hematological malignancies. Blood 129, 2070–2082 (2017). (PMID: 28179279539161810.1182/blood-2016-10-687830)
      Bellissimo, D. C. & Speck, N. A. RUNX1 mutations in inherited and sporadic leukemia. Front. Cell Develop. Biol. 5, 111 (2017). (PMID: 10.3389/fcell.2017.00111)
      Levanon, D. et al. Architecture and anatomy of the genomic locus encoding the human leukemia-associated transcription factor RUNX1/AML1. Gene 262, 23–33 (2001). (PMID: 1117966410.1016/S0378-1119(00)00532-1)
      Cai, Z. et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13, 423–431 (2000). (PMID: 1107016110.1016/S1074-7613(00)00042-X)
      Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA 93, 3444–3449 (1996). (PMID: 86229553962810.1073/pnas.93.8.3444)
      Lie, A. L. M. et al. Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development 145, dev149419 (2018).
      Song, W. J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175 (1999). (PMID: 1050851210.1038/13793)
      Telfer, J. C. & Rothenberg, E. V. Expression and function of a stem cell promoter for the murine CBFalpha2 gene: distinct roles and regulation in natural killer and T cell development. Developmental Biol. 229, 363–382 (2001). (PMID: 10.1006/dbio.2000.9991)
      Ghozi, M. C., Bernstein, Y., Negreanu, V., Levanon, D. & Groner, Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc. Natl Acad. Sci. USA 93, 1935–1940 (1996). (PMID: 87008623988610.1073/pnas.93.5.1935)
      North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999). (PMID: 1022601410.1242/dev.126.11.2563)
      Bee, T. et al. Alternative Runx1 promoter usage in mouse developmental hematopoiesis. Blood Cells Mol. Dis. 43, 35–42 (2009). (PMID: 1946421510.1016/j.bcmd.2009.03.011)
      Bee, T. et al. Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood 115, 3042–3050 (2010). (PMID: 2013909910.1182/blood-2009-08-238626)
      Sroczynska, P., Lancrin, C., Kouskoff, V. & Lacaud, G. The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood 114, 5279–5289 (2009). (PMID: 1985849810.1182/blood-2009-05-222307)
      Nottingham, W. T. et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188–4197 (2007). (PMID: 17823307223479510.1182/blood-2007-07-100883)
      Ng, C. E. et al. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells 28, 1869–1881 (2010). (PMID: 2079933310.1002/stem.507)
      Schutte, J. et al. An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability. eLife 5, e11469 (2016). (PMID: 26901438479897210.7554/eLife.11469)
      Marsman, J., Thomas, A., Osato, M., O’Sullivan, J. M. & Horsfield, J. A. A DNA contact map for the mouse Runx1 gene identifies novel haematopoietic enhancers. Sci. Rep. 7, 13347 (2017). (PMID: 29042628564530910.1038/s41598-017-13748-8)
      Mill, C. P. et al. RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 134, 59–73 (2019). (PMID: 31023702660995410.1182/blood.2018893982)
      Hanssen, L. L. P. et al. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017). (PMID: 28737770554017610.1038/ncb3573)
      Lettice, L. A. et al. Enhancer-adoption as a mechanism of human developmental disease. Hum. Mutat. 32, 1492–1499 (2011). (PMID: 2194851710.1002/humu.21615)
      Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014). (PMID: 24398455394110410.1101/gr.163519.113)
      Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015). (PMID: 25959774479153810.1016/j.cell.2015.04.004)
      Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019). (PMID: 3108629810.1038/s41576-019-0128-0)
      Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021). (PMID: 3323535810.1038/s41576-020-00303-x)
      Ovcharenko, I. et al. Evolution and functional classification of vertebrate gene deserts. Genome Res. 15, 137–145 (2005). (PMID: 1559094354027910.1101/gr.3015505)
      Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002). (PMID: 1203232012427910.1073/pnas.112212199)
      Braccioli, L. & de Wit, E. CTCF: a Swiss-army knife for genome organization and transcription regulation. Essays Biochem. 63, 157–165 (2019). (PMID: 3094074010.1042/EBC20180069)
      Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 e922 (2017). (PMID: 28525758553818810.1016/j.cell.2017.05.004)
      Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 e324 (2017). (PMID: 28985562584648210.1016/j.cell.2017.09.026)
      Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017). (PMID: 29094699568730310.1038/nature24281)
      Horsfield, J. A. et al. Cohesin-dependent regulation of Runx genes. Development 134, 2639–2649 (2007). (PMID: 1756766710.1242/dev.002485)
      Marsman, J. et al. Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development. Biochimica et. biophysica acta 1839, 50–61 (2014). (PMID: 2432138510.1016/j.bbagrm.2013.11.007)
      Mazzola, M. et al. Dysregulation of NIPBL leads to impaired RUNX1 expression and haematopoietic defects. J. Cell. Mol. Med. 24, 6272–6282 (2020).
      Oudelaar, A. M. et al. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat. Commun. 11, 2722 (2020). (PMID: 32483172726423610.1038/s41467-020-16598-7)
      Sroczynska, P., Lancrin, C., Pearson, S., Kouskoff, V. & Lacaud, G. In vitro differentiation of mouse embryonic stem cells as a model of early hematopoietic development. Methods Mol. Biol. 538, 317–334 (2009). (PMID: 1927758510.1007/978-1-59745-418-6_16)
      Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630–638 (2011). (PMID: 21685913343693310.1038/ng.857)
      Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994). (PMID: 7584402)
      Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014). (PMID: 25411453433778610.1126/science.1246426)
      Ortt, K., Raveh, E., Gat, U. & Sinha, S. A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of DeltaNp63. J. Cell. Biochem. 104, 1204–1219 (2008). (PMID: 1827506810.1002/jcb.21700)
      Fitch, S. R. et al. Gata3 targets Runx1 in the embryonic haematopoietic stem cell niche. IUBMB Life 72, 45–52 (2020). (PMID: 3163442110.1002/iub.2184)
      Cauchy, P. et al. Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep. 12, 821–836 (2015). (PMID: 26212328472691610.1016/j.celrep.2015.06.069)
      Cheng, C. K. et al. RUNX1 upregulation via disruption of long-range transcriptional control by a novel t(5;21)(q13;q22) translocation in acute myeloid leukemia. Mol. Cancer 17, 133 (2018). (PMID: 30157851611656410.1186/s12943-018-0881-2)
      Harland, L. T. G. et al. The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac mesodermal progenitors. Nat. Cell Biol. 23, 61–74 (2021). (PMID: 33420489761038110.1038/s41556-020-00611-8)
      Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). (PMID: 22495300335644810.1038/nature11082)
      Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000). (PMID: 1083954610.1038/35013100)
      Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011). (PMID: 21964334739842810.1038/nature10442)
      Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012). (PMID: 22955980343148510.1101/gr.136101.111)
      Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016). (PMID: 2670081510.1038/nature16490)
      Hashimoto, H. et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell 66, 711–720 e713 (2017). (PMID: 28529057554206710.1016/j.molcel.2017.05.004)
      Xu, C. & Corces, V. G. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359, 1166–1170 (2018). (PMID: 29590048635996010.1126/science.aan5480)
      Schuijers, J. et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018). (PMID: 29641996592915810.1016/j.celrep.2018.03.056)
      Canzio, D. & Maniatis, T. The generation of a protocadherin cell-surface recognition code for neural circuit assembly. Curr. Opin. Neurobiol. 59, 213–220 (2019). (PMID: 31710891688884410.1016/j.conb.2019.10.001)
      Curradi, M., Izzo, A., Badaracco, G. & Landsberger, N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol. 22, 3157–3173 (2002). (PMID: 1194067313377510.1128/MCB.22.9.3157-3173.2002)
      Schwessinger, R. et al. DeepC: predicting 3D genome folding using megabase-scale transfer learning. Nat. Methods 17, 1118–1124 (2020). (PMID: 33046896761062710.1038/s41592-020-0960-3)
      Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 e524 (2017). (PMID: 29053968565121810.1016/j.cell.2017.09.043)
      Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006). (PMID: 1638182510.1093/nar/gkj143)
      Harman, J. R. et al. A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes. Genome Res. 35, 1159–1173 (2021). (PMID: 10.1101/gr.268490.120)
      Iacovino, M. et al. HoxA3 is an apical regulator of haemogenic endothelium. Nat. Cell Biol. 13, 72–78 (2011). (PMID: 2117003510.1038/ncb2137)
      Ben-Ami, O. et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 4, 1131–1143 (2013). (PMID: 2405505610.1016/j.celrep.2013.08.020)
      Antony, J. et al. BET inhibition prevents aberrant RUNX1 and ERG transcription in STAG2 mutant leukaemia cells. J. Mol. Cell Biol. 12, 397–399 (2020). (PMID: 31897485728873710.1093/jmcb/mjz114)
      Thomas, A. L. et al. Transcriptional regulation of RUNX1: an informatics analysis. Genes 12, 1175 (2021).
      Wilson, N. K. et al. Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model. Blood 127, e12–e23 (2016). (PMID: 2680950710.1182/blood-2015-10-677393)
      Chen, C. et al. Spatial genome re-organization between fetal and adult hematopoietic stem cells. Cell Rep. 29, 4200–4211 e4207 (2019). (PMID: 31851943726267010.1016/j.celrep.2019.11.065)
      Brown, J. M. et al. A tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions. Nat. Commun. 9, 3849 (2018). (PMID: 30242161615507510.1038/s41467-018-06248-4)
      Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 e219 (2017). (PMID: 2838840710.1016/j.cell.2017.03.024)
      Paliou, C. et al. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc. Natl Acad. Sci. USA 116, 12390–12399 (2019). (PMID: 31147463658966610.1073/pnas.1900672116)
      Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001). (PMID: 1170029710.1146/annurev.genet.35.102401.091334)
      Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012). (PMID: 23074191352627810.1093/nar/gks925)
      Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015). (PMID: 26499245466432310.1073/pnas.1518552112)
      Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016). (PMID: 27210764488951310.1016/j.celrep.2016.04.085)
      de Wit, E. et al. CTCF Binding Polarity Determines Chromatin Looping. Mol Cell. 60 676–684 (2015). (PMID: 2652727710.1016/j.molcel.2015.09.023)
      Rao, S. S. P. et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 162, 687–688 (2015). (PMID: 10.1016/j.cell.2015.07.024)
      Vietri Rudan, M. et al. Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture. Cell Rep. 10, 1297–1309 (2015). (PMID: 25732821454231210.1016/j.celrep.2015.02.004)
      Hsieh, T. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 e538 (2020). (PMID: 32213323770352410.1016/j.molcel.2020.03.002)
      Hua, P. et al. Defining genome architecture at base-pair resolution. Nature 595, 125–129 (2021). (PMID: 3410868310.1038/s41586-021-03639-4)
      Hay, D. et al. Genetic dissection of the alpha-globin super-enhancer in vivo. Nat. Genet. 48, 895–903 (2016). (PMID: 27376235505843710.1038/ng.3605)
      Ing-Simmons, E. et al. Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat. Genet. 53, 487–499 (2021). (PMID: 33795866803507610.1038/s41588-021-00799-x)
      Zhang, C. et al. tagHi-C reveals 3D chromatin architecture dynamics during mouse hematopoiesis. Cell Rep. 32, 108206 (2020). (PMID: 3299799810.1016/j.celrep.2020.108206)
      Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007). (PMID: 18037899469053010.1038/nrm2298)
      Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor dna boundary element. Cell 173, 1398–1412 e1322 (2018). (PMID: 29731168598416510.1016/j.cell.2018.03.068)
      Harrold, C. L. et al. A functional overlap between actively transcribed genes and chromatin boundary elements. Preprint at bioRxiv https://doi.org/10.1101/2020.07.01.182089 (2020).
      Bozhilov, Y. K. et al. A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer-blocker. Nat. Commun. 12, 3806 (2021). (PMID: 34155213821749710.1038/s41467-021-23980-6)
      Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017). (PMID: 29217591573088810.15252/embj.201798004)
      Ren, G. et al. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol. Cell 67, 1049–1058 e1046 (2017). (PMID: 28938092582817210.1016/j.molcel.2017.08.026)
      Lee, J., Krivega, I., Dale, R. K. & Dean, A. The LDB1 complex Co-opts CTCF for erythroid lineage-specific long-range enhancer interactions. Cell Rep. 19, 2490–2502 (2017). (PMID: 28636938556429510.1016/j.celrep.2017.05.072)
      Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin alpha promoter choice. Cell 177, 639–653 e615 (2019). (PMID: 30955885682384310.1016/j.cell.2019.03.008)
      Kubo, N. et al. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 28, 152–161 (2021). (PMID: 33398174791346510.1038/s41594-020-00539-5)
      Zhou, Q. et al. ZNF143 mediates CTCF-bound promoter-enhancer loops required for murine hematopoietic stem and progenitor cell function. Nat. Commun. 12, 43 (2021). (PMID: 33397967778251010.1038/s41467-020-20282-1)
      Swiers, G. et al. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat. Commun. 4, 2924 (2013). (PMID: 2432626710.1038/ncomms3924)
      Kentepozidou, E. et al. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol. 21, 5 (2020). (PMID: 31910870694566110.1186/s13059-019-1894-x)
      Lacaud, G., Kouskoff, V., Trumble, A., Schwantz, S. & Keller, G. Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood 103, 886–889 (2004). (PMID: 1452576210.1182/blood-2003-06-2149)
      Mevel, R., Draper, J. E., Lie, A. L. M., Kouskoff, V. & Lacaud, G. RUNX transcription factors: orchestrators of development. Development 146, dev148296 (2019).
      Handyside, A. H., O’Neill, G. T., Jones, M. & Hooper, M. L. Use of BRL-conditioned medium in combination with feeder layers to isolate a diploid embryonal stem cell line. Roux’s Arch. Develop. Biol. 198, 48–56 (1989). (PMID: 10.1007/BF00376370)
      Dexter, T. M., Allen, T. D., Scott, D. & Teich, N. M. Isolation and characterisation of a bipotential haematopoietic cell line. Nature 277, 471–474 (1979). (PMID: 76333010.1038/277471a0)
      Pearson, S., Cuvertino, S., Fleury, M., Lacaud, G. & Kouskoff, V. In vivo repopulating activity emerges at the onset of hematopoietic specification during embryonic stem cell differentiation. Stem Cell Rep. 4, 431–444 (2015). (PMID: 10.1016/j.stemcr.2015.01.003)
      Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). (PMID: 24157548396986010.1038/nprot.2013.143)
      Gruzdev, A., Scott, G. J., Hagler, T. B. & Ray, M. K. CRISPR/Cas9-assisted genome editing in murine embryonic stem cells. Methods Mol. Biol. 1960, 1–21 (2019). (PMID: 3079851710.1007/978-1-4939-9167-9_1)
      Owens, D. D. G. et al. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res. 47, 7402–7417 (2019). (PMID: 31127293669865710.1093/nar/gkz459)
      Teboul, L., Herault, Y., Wells, S., Qasim, W. & Pavlovic, G. Variability in genome editing outcomes: challenges for research reproducibility and clinical safety. Mol. Ther. 28, 1422–1431 (2020).
      Mianne, J. et al. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods 121-122, 68–76 (2017). (PMID: 2836379210.1016/j.ymeth.2017.03.016)
      Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018). (PMID: 30010673639093810.1038/nbt.4192)
      Codner, G. F. et al. Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biol. 17, 30 (2016). (PMID: 27496052497472710.1186/s12860-016-0108-6)
      Oudelaar, A. M., Downes, D. J., Davies, J. O. J. & Hughes, J. R. Low-input capture-C: a chromosome conformation capture assay to analyze chromatin architecture in small numbers of cells. Bio-Protocol 7, e2645 (2017).
      Oudelaar, A. M., Davies, J. O. J., Downes, D. J., Higgs, D. R. & Hughes, J. R. Robust detection of chromosomal interactions from small numbers of cells using low-input Capture-C. Nucleic Acids Res. 45, e184 (2017). (PMID: 29186505572839510.1093/nar/gkx1194)
      Telenius, J. M. et al. CaptureCompendium: a comprehensive toolkit for 3C analysis. Preprint at bioRxiv. https://doi.org/10.1101/2020.02.17.952572 (2020).
      Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015). (PMID: 26619908466539110.1186/s13059-015-0831-x)
      Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012). (PMID: 22941365381649210.1038/nmeth.2148)
      Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
      Owens, D. D. G. d0minicO/Owens_et_al_Tiled-C: Owens_et_al_Runx1_Tiled-C_scripts_v1. https://doi.org/10.5281/zenodo.5781832 (2021).
      Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
      Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016). (PMID: 27079975498787610.1093/nar/gkw257)
      Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
      Blighe, K. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.2.0. https://github.com/kevinblighe/EnhancedVolcano . (2019).
      Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010). (PMID: 20132535287287410.1186/gb-2010-11-2-r14)
      Carlson, M., Vol. R package version 3.2.3 (2016).
      Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
      Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
      Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688)
      Telenius, J. & Hughes, J. R. NGseqBasic—a single-command UNIX tool for ATAC-seq, DNaseI-seq, Cut-and-Run, and ChIP-seq data mapping, high-resolution visualisation, and quality control. Preprint at bioRxiv. https://doi.org/10.1101/393413 (2018).
      Liu, T. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol. Biol. 1150, 81–95 (2014). (PMID: 2474399110.1007/978-1-4939-0512-6_4)
      Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
      Jeziorska, D. M. et al. DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proc. Natl Acad. Sci. USA 114, E7526–E7535 (2017). (PMID: 28827334559464910.1073/pnas.1703087114)
      Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011). (PMID: 21493656310222110.1093/bioinformatics/btr167)
      Miyoshi, H. et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23, 2762–2769 (1995). (PMID: 765183830710210.1093/nar/23.14.2762)
      Bee, T. et al. The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood 113, 5121–5124 (2009). (PMID: 1932185910.1182/blood-2008-12-193003)
    • Grant Information:
      G0902418 United Kingdom MRC_ Medical Research Council; 105281/Z/14/Z United Kingdom WT_ Wellcome Trust; MR/X001210/1 United Kingdom MRC_ Medical Research Council; 108870/Z/15/Z United Kingdom WT_ Wellcome Trust; 106130/Z/14/Z United Kingdom WT_ Wellcome Trust; MC_UU_00029/3 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; MC_UU_00016/14 United Kingdom MRC_ Medical Research Council; MR/T014067/1 United Kingdom MRC_ Medical Research Council; MC_UU_00016/2 United Kingdom MRC_ Medical Research Council; 203728/Z/16/Z United Kingdom WT_ Wellcome Trust; MC_UU_12009/2 United Kingdom MRC_ Medical Research Council; MR/N00969X/1 United Kingdom MRC_ Medical Research Council; MR/K015777X/1 United Kingdom MRC_ Medical Research Council
    • Accession Number:
      0 (Cell Cycle Proteins)
      0 (Chromatin)
      0 (Core Binding Factor Alpha 2 Subunit)
      0 (Runx1 protein, mouse)
      9007-49-2 (DNA)
    • Publication Date:
      Date Created: 20220210 Date Completed: 20220307 Latest Revision: 20240313
    • Publication Date:
      20240313
    • Accession Number:
      PMC8828719
    • Accession Number:
      10.1038/s41467-022-28376-8
    • Accession Number:
      35140205