Response Surface Methodology Based Optimization, Partial Purification and Characterization of Alkaline Phosphatase Isolated from Pseudomonas asiatica Strain ZKB1 and its Application in Plant Growth Promotion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: [Cham] : Springer
      Original Publication: Totowa, NJ : Humana Press, c1994-
    • Subject Terms:
    • Abstract:
      The present study was defined to evaluate the effect of a combinational approach of applying phosphate-solubilizing bacteria and alkaline phosphatase for plant growth promotion as a novel strategy. An extracellular phosphatase producing novel Pseudomonas asiatica strain ZKB1 was isolated from ant hill soil. Alkaline phosphatase production was statistically optimized by Plackett-Burman and central composite designs with a yield of 42.45 U/ml and 5.88-fold enhancement. Alkaline phosphatase was purified by column chromatography (DEAE-Cellulose and Sephadex G-100) with 17.55-fold purification and specific activity of 87.77 U/mg. The molecular mass of purified phosphatase was ~ 45 kDa. The optimum pH and temperature were 9.0 and 50 °C, respectively, revealing alkali-thermostability. Phosphatase exhibited the highest specificity toward p-nitrophenyl phosphate disodium salt. Kinetic analysis revealed K m (0.434 mM) and V max (264.44 U/mg). Alkaline phosphatase and Pseudomonas asiatica strain ZKB1 as phosphate-solubilizing bacteria were assessed for their ability to induce plant growth in pot experiments with Phaseolus mungo seeds. Seeds soaked in bacterial culture broth and irrigated with increased phosphatase concentration demonstrated better growth with plumule and radical length of 14.8 ± 0.2 cm and 3.5 ± 0.4 cm, respectively. Results were consistent with the combinational approach in terms of enhanced growth. The study suggests the application of alkaline phosphatases in agricultural management, crop improvements, and soil fertility enhancement.
      (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Fonseca, A. A., Santos, D. A., Passos, R. R., Andrade, F. V., & Rangel, O. J. P. (2020). Phosphorus availability and grass growth in biochar-modified acid soil: A study excluding the effects of soil pH. Soil Use and Management, 36, 714–725. https://doi.org/10.1111/sum.12609. (PMID: 10.1111/sum.12609)
      Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi current perspective. Archives of Agronomy and Soil Science, 56, 73–98. https://doi.org/10.1080/03650340902806469. (PMID: 10.1080/03650340902806469)
      Kaur, G., & Reddy, M. S. (2013). Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). Journal of General and Applied Microbiology, 59, 295–303. https://doi.org/10.2323/jgam.59.295. (PMID: 10.2323/jgam.59.29524005179)
      Etesami, H., & Glick, B. R. (2020). Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 178, 104124. https://doi.org/10.1016/j.envexpbot.2020.104124. (PMID: 10.1016/j.envexpbot.2020.104124)
      Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). Efficacy of phosphate solubilizing Actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere, 17, 100284. https://doi.org/10.1016/j.rhisph.2020.100284. (PMID: 10.1016/j.rhisph.2020.100284)
      Maloney, V. J., Park, J. Y., Unda, F., & Mansfield, S. D. (2015). Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany, 66(14), 4383–4394. https://doi.org/10.1093/jxb/erv101. (PMID: 10.1093/jxb/erv101258736784493782)
      Menezes-Blackburn, D., Giles, C., Darch, T., George, T. S., Blackwell, M., Stutter, M., Shand, C., Lumsdon, D., Cooper, P., Wendler, R., Brown, L., Almeida, D. S., Wearing, C., Zhang, H., & Haygarth, P. M. (2018). Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil, 427, 5–16. https://doi.org/10.1007/s11104-017-3362-2. (PMID: 10.1007/s11104-017-3362-230996482)
      George, T. S., Giles, C. D., Menezes-Blackburn, D., Condron, L. M., et al. (2018). Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities. Plant and Soil, 427, 191–208. https://doi.org/10.1007/s11104-017-3391-x. (PMID: 10.1007/s11104-017-3391-x)
      Menezes-Blackburn, D., Jorquera, M. A., Greiner, R., Gianfreda, L., & Mora, M. D. L. (2013). Phytases and phytase-labile organic phosphorus in manures and soils. Critical Reviews in Environment Science and Technology, 43, 916–954. https://doi.org/10.1080/10643389.2011.627019. (PMID: 10.1080/10643389.2011.627019)
      Giles, C. D., George, T. S., Brown, L. K., & Mezeli, M. M. (2017). Does the combination of citrate and phytase exudation in Nicotiana tabacum promote the acquisition of endogenous soil organic phosphorus? Plant and Soil, 412, 43–59. https://doi.org/10.1007/s11104-016-2884-3. (PMID: 10.1007/s11104-016-2884-3)
      Menezes-Blackburn, D., Jorquera, M. A., Gianfreda, L., de la Luz, M., & Mora, R. G. (2014). A novel phosphorus biofertilization strategy using cattle manure treated with phytase–nanoclay complexes. Biology and Fertility of Soils, 50, 583–592. https://doi.org/10.1007/s00374-013-0872-9. (PMID: 10.1007/s00374-013-0872-9)
      Dick, C. F., Dos-Santos, A. L. A., & Meyer-Fernandes, J. R. (2011). Inorganic phosphate as an important regulator of phosphatases. Enzyme Research, 2011, 1–7. https://doi.org/10.4061/2011/103980. (PMID: 10.4061/2011/103980)
      Sharifian, S., Homaeib, A., Kimc, S. K., & Satarid, M. (2018). Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications. Process Biochemistry, 64, 103–115. https://doi.org/10.1016/j.procbio.2017.10.005. (PMID: 10.1016/j.procbio.2017.10.005)
      Gotthard, G., Hiblot, J., Gonzalez, D., Elias, M., & Chabriere, E. (2013). Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PLoS ONE, 8, e77995. https://doi.org/10.1371/journal.pone.0077995. (PMID: 10.1371/journal.pone.0077995242237493817169)
      Ambreen, S., Yasmin, A., & Aziz, S. (2020). Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon, 6, e04221. https://doi.org/10.1016/j.heliyon.2020.e04221. (PMID: 10.1016/j.heliyon.2020.e04221326425787334429)
      Chafik, A., Essamadi, A., Celik, S. Y., & Mavi, A. (2020). A novel acid phosphatase from cactus (Opuntia megacantha Salm-Dyck) cladodes: Purification and biochemical characterization of the enzyme. International Journal of Biological Macromolecules, 160, 991–999. https://doi.org/10.1016/j.ijbiomac.2020.05.175. (PMID: 10.1016/j.ijbiomac.2020.05.17532454111)
      Chu, Y. H., Yu, X. X., Jin, X., Wang, Y. T., Zhao, D. J., Zhang, P., Sunab, G. M., & Zhang, Y. H. (2019). Purification and characterization of alkaline phosphatase from lactic acid bacteria. RSC Advances, 9, 354–360. https://doi.org/10.1039/C8RA08921C. (PMID: 10.1039/C8RA08921C355216169059361)
      Ornela, P. H. O., & Guimaraes, L. H. S. (2020). Purification and characterization of an iron-activated alkaline phosphatase produced by Rhizopus microsporus var. microsporus under submerged fermentation using rye flour. Journal of Applied Biology and Biotechnology, 8, 16–25. https://doi.org/10.7324/JABB.2020.80403. (PMID: 10.7324/JABB.2020.80403)
      Behera, B. C., Yadav, H., Singh, S. K., Sethi, B. K., Mishra, R. R., Kumari, S., & Thatoi, H. (2017). Alkaline phosphatase activity of a phosphate solubilizing Alcaligenes faecalis, isolated from Mangrove soil. Biotechnology Research and Innovation, 1, 101–111. https://doi.org/10.1016/j.biori.2017.01.003. (PMID: 10.1016/j.biori.2017.01.003)
      Obidi, O. F., Awe, O. O., Igwo-Ezikpe, M. N., & Okekunjo, F. O. (2018). Production of phosphatase by microorganisms isolated from discolored painted walls in a typical tropical environment: A Non-Parametric analysis. Arab Journal of Basic and Applied Sciences, 25, 111–121. https://doi.org/10.1080/25765299.2018.1527277. (PMID: 10.1080/25765299.2018.1527277)
      Banik, R. M., & Pandey, S. K. (2009). Selection of metal salts for alkaline phosphatase production using response surface methodology. Food Research International, 42, 470–475. https://doi.org/10.1016/j.foodres.2009.01.018. (PMID: 10.1016/j.foodres.2009.01.018)
      Yousef, S. M., El-Gendi, H., Ghozlan, H., Sabry, S. A., Soliman, N. A., & Abdel-Fattah, Y. R. (2021). Production, partial purification and characterization of alkaline phosphatase from a thermo-alkaliphile Geobacillusthermodenitrificans I2 isolate. Biocatalysis and Agricultural Biotechnology, 31, 101853. https://doi.org/10.1016/j.bcab.2020.101853. (PMID: 10.1016/j.bcab.2020.101853)
      Bagewadi, Z. K., Dsouza, V., Mulla, S. I., Deshpande, S. H., Muddapur, U. M., Yaraguppi, D. A., Reddy, V. D., Bhavikatti, J. S., & More, S. S. (2020). Structural and functional characterization of bacterial cellulose from Enterobacter hormaechei subsp. steigerwaltiistrain ZKE7. Cellulose, 27, 9181–9199. https://doi.org/10.1007/s10570-020-03412-2. (PMID: 10.1007/s10570-020-03412-2)
      Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2018). Response surface methodology based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. Journal of Environmental Chemical Engineering, 6, 4828–4839. https://doi.org/10.1016/j.jece.2018.07.007. (PMID: 10.1016/j.jece.2018.07.007)
      Yaraguppi, D. A., Bagewadi, Z. K., Muddapur, U. M., & Mulla, S. I. (2020). Response surface methodology based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2. Journal of Petroleum Exploration and Production Technologies, 10, 2483–2498. https://doi.org/10.1007/s13202-020-00866-9. (PMID: 10.1007/s13202-020-00866-9)
      Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616. https://doi.org/10.1016/j.micres.2020.126616. (PMID: 10.1016/j.micres.2020.12661633115624)
      Cheng, Y., Luo, J., Wang, Y., Ge, J., Zhou, S., Yang, W., & Kou, J. (2021). Staphylococcus hominis YJILJH and Staphylococcus epidermidis YJ101 promote the growth of white clover (Trifolium repens L.) by increasing available phosphorus. Symbiosis, 83, 103–114. https://doi.org/10.1007/s13199-020-00739-z. (PMID: 10.1007/s13199-020-00739-z)
      Mulla, S. I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M., & Yu, C. P. (2018). Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 206, 93–102. https://doi.org/10.1016/j.jenvman.2017.10.029. (PMID: 10.1016/j.jenvman.2017.10.02929059576)
      Mulla, S. I., Sun, Q., Hu, A., Wang, Y., Ashfaq, M., Eqani, S. A., & Yu, C. P. (2016). Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS ONE, 11, e0165013. https://doi.org/10.1371/journal.pone.0165013. (PMID: 10.1371/journal.pone.0165013277555785068754)
      Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197. (PMID: 10.1093/molbev/mst197241321223840312)
      Pandey, S. K., & Banik, R. M. (2011). Extractive fermentation for enhanced production of alkaline phosphatase from Bacillus licheniformis MTCC 1483 using aqueous two-phase systems. Bioresource Technology, 102, 4226–4231. https://doi.org/10.1016/j.biortech.2010.12.066. (PMID: 10.1016/j.biortech.2010.12.06621227688)
      Bagewadi, Z. K., Bhavikatti, J. S., Muddapur, U. M., Yaraguppi, D. A., & Mulla, S. I. (2020). Statistical optimization and characterization of bacterial cellulose produced by isolated thermophilic Bacillus licheniformis strain ZBT2. Carbohydrate Research, 491, 107979. https://doi.org/10.1016/j.carres.2020.107979. (PMID: 10.1016/j.carres.2020.10797932171995)
      Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2017). Optimization of laccase production and its application in delignification of biomass. International Journal of Recycling Organic Waste in Agriculture, 6, 351–365. https://doi.org/10.1007/s40093-017-0184-4. (PMID: 10.1007/s40093-017-0184-4)
      Bagewadi, Z. K., Mulla, S. I., Shouche, Y., & Ninnekar, H. Z. (2016). Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech, 6, 164. https://doi.org/10.1007/s13205-016-0484-9. (PMID: 10.1007/s13205-016-0484-9283302364980835)
      Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2016). Purification, characterization, gene cloning and expression of GH-10 xylanase (Penicillium citrinum isolate HZN13). 3 Biotech, 6, 169. https://doi.org/10.1007/s13205-016-0489-4. (PMID: 10.1007/s13205-016-0489-4283302414987633)
      Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal, Genetic Engineering & Biotechnology, 15, 139–150. https://doi.org/10.1016/j.jgeb.2017.01.007. (PMID: 10.1016/j.jgeb.2017.01.007)
      Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal, Genetic Engineering & Biotechnology, 15, 379–391. https://doi.org/10.1016/j.jgeb.2017.06.005. (PMID: 10.1016/j.jgeb.2017.06.005)
      Li, L., Chen, R., Zuo, Z., Lv, Z., Yang, Z., Mao, W., Liu, Y., Zhou, Y., Huang, J., & Song, Z. (2020). Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoeaagglomerans ZB. World Journal of Microbiology & Biotechnology, 36, 27. https://doi.org/10.1007/s11274-019-2744-4. (PMID: 10.1007/s11274-019-2744-4)
      Daniel, R. M., Danson, M. J., Eisenthal, R., Lee, C. K., & Peterson, M. E. (2008). The effect of temperature on enzyme activity: New insights and their implications. Extremophiles, 12, 51–59. https://doi.org/10.1007/s00792-007-0089-7. (PMID: 10.1007/s00792-007-0089-717849082)
      Junior, A. B., Guimaraes, L. H. S., Terenzi, H. F., Jorge, J. A., Leone, F. A., & Polizeli, M. L. T. M. (2008). Purification and biochemical characterization of thermostable alkaline phosphatases produced by Rhizopus microsporus var. rhizopodiformis. Folia Microbiology, 53(6), 509–516. https://doi.org/10.1007/s12223-008-0080-4. (PMID: 10.1007/s12223-008-0080-4)
      Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M. X., & Barea, J. M. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217. https://doi.org/10.1016/j.apsoil.2010.04.007. (PMID: 10.1016/j.apsoil.2010.04.007)
      Baliyan, N., Dhiman, S., Dheeman, S., Kumar, S., Arora, N. K., & Maheshwari, D. K. (2021). Optimization of gibberellic acid production in endophytic Bacillus cereus using response surface methodology and its use as plant growth regulator in chickpea. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10492-2. (PMID: 10.1007/s00344-021-10492-2)
      Ismail, S. A., Serwa, A., Abood, A., Fayed, B., Ismail, S. A., & Hashem, A. M. (2019). A Study of the use of deep artificial neural network in the optimization of the production of antifungal exochitinase compared with the response surface methodology. Japanese Journal of Sanitary Zoology, 12(5), 543–551.
      Helianti, I., Okubo, T., Morita, Y., & Tamiya, E. (2007). Characterization of thermostable native alkaline phosphatase from an aerobic hyperthermophilic archaeon, Aeropyrumpernix K1. Applied Microbiology and Biotechnology, 74(1), 107–112. https://doi.org/10.1007/s00253-006-0640-y. (PMID: 10.1007/s00253-006-0640-y17256119)
      Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2016). Purification and characterization of endo β-1,4-D-glucanase from Trichoderma harzianum strain HZN11 and its application in production of bioethanol from sweet sorghum bagasse. 3 Biotech, 6, 101. https://doi.org/10.1007/s13205-016-0421-y. (PMID: 10.1007/s13205-016-0421-y283301714829572)
      Chhokar, V., Sangwan, M., Beniwal, V., Nehra, K., & Nehra, K. S. (2010). Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299. Applied Biochemistry and Biotechnology, 160, 2256–2264. https://doi.org/10.1007/s12010-009-8813-7. (PMID: 10.1007/s12010-009-8813-719844665)
      Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7, 110. https://doi.org/10.3389/fbioe.2019.00110/full. (PMID: 10.3389/fbioe.2019.00110/full312636966584820)
      Nazari, M., & Smith, D. L. (2020). A PGPR-produced bacteriocin for sustainable agriculture: A review of thuricin 17 characteristics and applications. Frontiers in Plant Science, 11, 1–7. https://doi.org/10.3389/fpls.2020.00916. (PMID: 10.3389/fpls.2020.00916)
      Toan, N. S., Nguyen, T. D. P., Thu, T. T. N., Lim, D. T., Dong, P. D., Gia, N. T., Khoo, K. S., Chew, K. W., & Show, P. L. (2021). Soil mineralization as effects on plant growth promoting bacteria isolated from microalgae in wastewater and rice straw application in a long-term paddy rice in Central Viet Nam. Environmental Technology and Innovation, 24, 101982. (PMID: 10.1016/j.eti.2021.101982)
      Wang, G., Li, B., Peng, D., Zhao, H., Lu, M., Zhang, L., Li, J., Zhang, S., Guan, C., & Ji, J. (2022). Combined application of H 2 S and a plant growth promoting strain JIL321 regulates photosynthetic efficacy, soil enzyme activity and growth-promotion in rice under salt stress. Microbiological Research, 256, 126943. https://doi.org/10.1016/j.micres.2021.126943. (PMID: 10.1016/j.micres.2021.12694334953293)
      Ankati, S., Srinivas, V., Pratyusha, S., & Gopalakrishnan, S. (2021). Streptomyces consortia-mediated plant defence against Fusarium wilt and plant growth-promotion in chickpea. Microbial Pathogenesis, 157, 104961. https://doi.org/10.1016/j.micpath.2021.104961. (PMID: 10.1016/j.micpath.2021.10496134033892)
      Myo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134, 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017. (PMID: 10.1016/j.biocontrol.2019.03.017)
      Lei, Z., Qun, L., Ya-qing, Z., Qing-yu, C., & Yuan-cun, L. (2017). Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress. Journal of Integrative Agriculture, 16, 1341–1346. https://doi.org/10.1016/S2095-3119(16)61490-9. (PMID: 10.1016/S2095-3119(16)61490-9)
    • Contributed Indexing:
      Keywords: Enzyme purification; Phosphatase; Pot studies; Process optimization; Pseudomonas asiatica
    • Accession Number:
      0 (Phosphates)
      0 (Soil)
      EC 3.1.3.1 (Alkaline Phosphatase)
    • Subject Terms:
      Pseudomonas asiatica
    • Publication Date:
      Date Created: 20220313 Date Completed: 20220811 Latest Revision: 20220811
    • Publication Date:
      20240105
    • Accession Number:
      10.1007/s12033-022-00477-1
    • Accession Number:
      35279799