Recent advances in developing innovative sorbents for phosphorus removal-perspective and opportunities.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Parasana N;Parasana N; Shah M; Shah M; Unnarkat A; Unnarkat A
  • Source:
    Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Jun; Vol. 29 (26), pp. 38985-39016. Date of Electronic Publication: 2022 Mar 18.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      Phosphorus is an essential mineral for the growth of plants which is supplied in the form of fertilizers. Phosphorus remains an inseparable part of developing agrarian economics. Phosphorus enters waterways through three different sources: domestic, agricultural, and industrial sources. Rainfall is the main cause for washing away a large amount of phosphates from farm soils into nearby waterways. The surplus of phosphorus in the water sources cause eutrophication and degradation of the habitat with an adverse effect on aquatic life and plants. Phosphate elimination is necessary to control eutrophication in water sources. Among the different methods reported for the removal and recovery of phosphorus: ion exchange, precipitation, crystallization, and others, adsorption standout as a sustainable solution. The current review offers a comparative assessment of the literature on novel materials and techniques for the removal of phosphorus. Herein, different adsorbents, their behaviors, mechanisms, and capacity of materials are discussed in detail. The adsorbents are categorized under different heads: iron-based, silica-alumina-based, calcium-based, biochar-based wherein the metal and metal oxides are employed in phosphorus removal. The ideal attribute of adsorbent will be the utilization of spent adsorbents as a phosphate plant food and a soil conditioner in agriculture. The review provides the perspective on the current research with potential challenges and directives for possible research in the field.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aboelenin RMM, Ahmed SAS, Mohamed GM, Selim MM (2015) Removal of phosphate from water by alumina prepared from sodium aluminate. 03(06):928–933.
      Almasri DA, Saleh NB, Atieh MA, McKay G, Ahzi S (2019) Adsorption of phosphate on iron oxide doped halloysite nanotubes. Sci Rep 9(1):1–13. https://doi.org/10.1038/s41598-019-39035-2. (PMID: 10.1038/s41598-019-39035-2)
      Almeelbi T, Bezbaruah A (2012) Nanotechnology for sustainable development, first edition. J Nanopart Res 14:197–210. https://doi.org/10.1007/978-3-319-05041-6. (PMID: 10.1007/978-3-319-05041-6)
      Almeida PV, Santos AF, Lopes DV, Gando-Ferreira LM, Quina MJ (2020) Novel adsorbents based on eggshell functionalized with iron oxyhydroxide for phosphorus removal from liquid effluents. J Water Process Eng 36(February):101248. https://doi.org/10.1016/j.jwpe.2020.101248. (PMID: 10.1016/j.jwpe.2020.101248)
      Ammary BY (2004) Nutrients requirements in biological industrial wastewater treatment. Afr J Biotechnol 3(4):236–238. https://doi.org/10.5897/ajb2004.000-2042. (PMID: 10.5897/ajb2004.000-2042)
      Anirudhan TS, Noeline BF, Manohar DM (2006) Phosphate removal from wastewaters using a weak anion exchanger prepared from a lignocellulosic residue. Environ Sci Technol 40(8):2740–2745. https://doi.org/10.1021/es052070h. (PMID: 10.1021/es052070h)
      Antunes AE, Jacob MV, Brodie G, Schneider PA (2017) Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. Biochem Pharmacol. https://doi.org/10.1016/j.jece.2017.12.011.
      Arshadi M, Foroughifard S, Etemad Gholtash J, Abbaspourrad A (2015) Preparation of iron nanoparticles-loaded Spondias purpurea seed waste as an excellent adsorbent for removal of phosphate from synthetic and natural waters. J Colloid Interface Sci 452:69–77. https://doi.org/10.1016/j.jcis.2015.04.019. (PMID: 10.1016/j.jcis.2015.04.019)
      Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468. https://doi.org/10.1016/j.scitotenv.2008.10.053. (PMID: 10.1016/j.scitotenv.2008.10.053)
      Aziz T, Azad S, Nair SP, Verma JS, Unnarkat AP, Pan S, Namdeo A (2021) Potential risk and safety concern of nanomaterials used for wastewater treatment. In: Bhanvase B, Sonawane S, Pawade V, Pandit A (eds) Handbook of nanomaterials for wastewater treatment. Elsevier, pp 59–83. https://doi.org/10.5555/asdf. (PMID: 10.5555/asdf)
      Bacelo H, Pintor AMA, Santos SCR, Boaventura RAR, Botelho CMS (2020) Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem Eng J 381(August 2019):122566. https://doi.org/10.1016/j.cej.2019.122566. (PMID: 10.1016/j.cej.2019.122566)
      Baker MJ, Blowes DW, Ptacek CJ (1998) Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ Sci Technol 32(15):2308–2316. https://doi.org/10.1021/es970934w. (PMID: 10.1021/es970934w)
      Battistoni P, Carniani E, Fratesi V, Balboni P, Tornabuoni P (2006) Chemical-physical pretreatment of phosphogypsum leachate. Ind Eng Chem Res 45(9):3237–3242. https://doi.org/10.1021/ie051252h. (PMID: 10.1021/ie051252h)
      Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience 51(3):227–234. https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2. (PMID: 10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2)
      Borchardt JA (1969) Eutrophication—causes and effects. J Am Water Works Assoc 61(6):272–275. https://doi.org/10.1002/J.1551-8833.1969.TB03755.X. (PMID: 10.1002/J.1551-8833.1969.TB03755.X)
      Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Glob Biogeochem Cycles 23(4). https://doi.org/10.1029/2009GB003576.
      Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2013) Erratum: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period (Proceedings of the National Academy of Sciences of the United States of America (2013) DOI: 10.1073/pnas.10128781). Proc Natl Acad Sci U S A 110(52):21196. https://doi.org/10.1073/pnas.1206191109. (PMID: 10.1073/pnas.1206191109)
      Bradford SA, Segal E, Zheng W, Wang Q, Hutchins SR (2008) Reuse of concentrated animal feeding operation wastewater on agricultural lands. J Environ Qual 37(S5):S-97-S-115. https://doi.org/10.2134/jeq2007.0393. (PMID: 10.2134/jeq2007.0393)
      Brar GS, Tolleson EL (1975) The luxury uptake phenomenon for removal of phosphates from municipal wastewater. Water Res 9(1):71–77. https://doi.org/10.1016/0043-1354(75)90154-2. (PMID: 10.1016/0043-1354(75)90154-2)
      Bustillo-Lecompte CF, Mehrvar M (2015) Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J Environ Manag 161:287–302. https://doi.org/10.1016/j.jenvman.2015.07.008. (PMID: 10.1016/j.jenvman.2015.07.008)
      Cai Z, Kim J, Benjamin MM (2008) NOM removal by adsorption and membrane filtration using heated aluminum oxide particles. Environ Sci Technol 42(2):619–623. https://doi.org/10.1021/es7021285. (PMID: 10.1021/es7021285)
      Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369. https://doi.org/10.1016/j.rser.2012.11.030. (PMID: 10.1016/j.rser.2012.11.030)
      Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho SH, Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589. https://doi.org/10.1016/J.JCLEPRO.2021.126589. (PMID: 10.1016/J.JCLEPRO.2021.126589)
      Chan Pacheco CR (2019) Integrating enhanced biological phosphorus removal (EBPR) in a resource recovery scenario. TDX (Tesis Doctorals En Xarxa), September.
      Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Feng X, Shao L (2018) The toxicity of silica nanoparticles to the immune system. Nanomedicine 13(15):1939–1962. https://doi.org/10.2217/nnm-2018-0076. (PMID: 10.2217/nnm-2018-0076)
      Chislock MF, Doster E, Zitomer RA, W. (1969) Eutrophication-causes and effects. J Am Water Works Assoc 61(6):272–275. https://doi.org/10.1002/j.1551-8833.1969.tb03755.x. (PMID: 10.1002/j.1551-8833.1969.tb03755.x)
      Chittoo BS, Sutherland C (2019) Adsorption using lime-iron sludge–encapsulated calcium alginate beads for phosphate recovery with ANN- and RSM-optimized encapsulation. J Environ Eng 145(5):04019019. https://doi.org/10.1061/(asce)ee.1943-7870.0001519. (PMID: 10.1061/(asce)ee.1943-7870.0001519)
      Comeau Y, Hall KJ, Hancock REW, Oldham WK (1986) Biochemical model for enhanced biological phosphorus removal. Water Res 20(12):1511–1521. https://doi.org/10.1016/0043-1354(86)90115-6. (PMID: 10.1016/0043-1354(86)90115-6)
      Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049. https://doi.org/10.3390/su3102027. (PMID: 10.3390/su3102027)
      Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009. (PMID: 10.1016/j.gloenvcha.2008.10.009)
      Correll DL (1998) Role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–166.
      Cristóvaõ RO, Botelho CM, Martins RJE, Loureiro JM, Boaventura RAR (2015) Fish canning industry wastewater treatment for water reuse—a case study. J Clean Prod 87(1):603–612. https://doi.org/10.1016/j.jclepro.2014.10.076. (PMID: 10.1016/j.jclepro.2014.10.076)
      Dai J, Yang H, Yan H, Shangguan Y, Zheng Q, Cheng R (2011) Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper(II). Chem Eng J 166(3):970–977. https://doi.org/10.1016/j.cej.2010.11.085. (PMID: 10.1016/j.cej.2010.11.085)
      Dai L, Wu B, Tan F, He M, Wang W, Qin H, Tang X, Zhu Q, Pan K, Hu Q (2014) Engineered hydrochar composites for phosphorus removal/recovery: lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresour Technol 161:327–332. https://doi.org/10.1016/j.biortech.2014.03.086. (PMID: 10.1016/j.biortech.2014.03.086)
      Daniels JA (2014) Adv Environ Res 36.
      Davis ML (2011) Water and wastewater engineering—design principles and practice. International Edition, McGraw Hill, Singapore.
      de Carvalho Eufrásio Pinto M, David da Silva D, Amorim Gomes AL, Menezes dos Santos RM, Alves de Couto RA, Ferreira de Novais R, Leopoldo Constantino VR, Tronto J, Pinto FG (2019) Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution. J Clean Prod 222:36–46. https://doi.org/10.1016/j.jclepro.2019.03.012. (PMID: 10.1016/j.jclepro.2019.03.012)
      de Sousa AF, Braga TP, Gomes ECC, Valentini A, Longhinotti E (2012) Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chem Eng J 210:143–149. https://doi.org/10.1016/j.cej.2012.08.080. (PMID: 10.1016/j.cej.2012.08.080)
      Delgadillo-Velasco L, Hernández-Montoya V, Rangel-Vázquez NA, Cervantes FJ, Montes-Morán MA, del Moreno-Virgen MR (2018) Screening of commercial sorbents for the removal of phosphates from water and modeling by molecular simulation. J Mol Liq 262(2017):443–450. https://doi.org/10.1016/j.molliq.2018.04.100. (PMID: 10.1016/j.molliq.2018.04.100)
      Deng Y, Zhang T, Sharma BK, Nie H (2019) Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system. Sci Total Environ 646:1140–1154. https://doi.org/10.1016/j.scitotenv.2018.07.369. (PMID: 10.1016/j.scitotenv.2018.07.369)
      Déry P, Anderson B (2007) Peak phosphorus prospect of a phosphorus peak. Energy Bull 13:2007.
      Do QC, Ko SO, Jang A, Kim Y, Kang S (2020) Incorporation of iron (oxyhydr)oxide nanoparticles with expanded graphite for phosphorus removal and recovery from aqueous solutions. In: Chemosphere, vol 259. Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2020.127395. (PMID: 10.1016/j.chemosphere.2020.127395)
      Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y (2016) The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere 144:1682–1689. https://doi.org/10.1016/j.chemosphere.2015.10.066. (PMID: 10.1016/j.chemosphere.2015.10.066)
      Dong, H., Li, L., Wang, Y., Ning, Q., Wang, B., & Zeng, G. (2020). Aging of zero-valent iron-based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity. In Water Environment Research (Vol. 92, Issue 5). https://doi.org/10.1002/wer.1265. (PMID: 10.1002/wer.1265)
      Drangert JO (1998) Fighting the urine blindness to provide more sanitation options. Water SA 24(2):157–164.
      Drenkova-Tuhtan A, Schneider M, Franzreb M, Meyer C, Gellermann C, Sextl G, Mandel K, Steinmetz H (2017) Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe3O4/SiO2 particles with magnetic harvesting. Water Res 109:77–87. https://doi.org/10.1016/j.watres.2016.11.039. (PMID: 10.1016/j.watres.2016.11.039)
      Drissi R, Mouats C (2018) Removal of phosphate by Ion exchange resin: kinetic and thermodynamic study. Rasayan J Chem 11(3):1126–1132. https://doi.org/10.31788/RJC.2018.1132081. (PMID: 10.31788/RJC.2018.1132081)
      Driver J, Lijmbach D, Steen I (2010) Why recover phosphorus for recycling, and how? 20(7):651–662. https://doi.org/10.1080/09593332008616861.
      Du X, Han Q, Li J, Li H (2017) The behavior of phosphate adsorption and its reactions on the surfaces of Fe–Mn oxide adsorbent. J Taiwan Inst Chem Eng 76:167–175. https://doi.org/10.1016/j.jtice.2017.04.023. (PMID: 10.1016/j.jtice.2017.04.023)
      Edmondson WT (1970) Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169:690–691. (PMID: 10.1126/science.169.3946.690)
      EFMA (2000) Phosphorus—essential element for food production. 1–38. http://www.sswm.info/sites/default/files/reference_attachments/EFMA2000PhosphorusEssentialforFoodProduction.pdf.
      Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl 105:325–346. https://doi.org/10.1016/j.resconrec.2015.09.016. (PMID: 10.1016/j.resconrec.2015.09.016)
      Eilbeck W, Mattock G (1987) Chemical processes in waste water treatment. Ellis Horwood Limited;John Wiley & Sons.
      Eljamal O, Khalil AME, Sugihara Y, Matsunaga N (2016) Phosphorus removal from aqueous solution by nanoscale zero valent iron in the presence of copper chloride. Chem Eng J 293:225–231. https://doi.org/10.1016/j.cej.2016.02.052. (PMID: 10.1016/j.cej.2016.02.052)
      Eljamal O, Thompson IP, Maamoun I, Shubair T, Eljamal K, Lueangwattanapong K, Sugihara Y (2020) Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal. J Mol Liq 299:112144. https://doi.org/10.1016/j.molliq.2019.112144. (PMID: 10.1016/j.molliq.2019.112144)
      Elser, J., & White, S. (2010). Peak phosphorus—foreign policy.
      Ensink JHJ, Mahmood T, Van Der Hoek W, Raschid-Sally L, Amerasinghe FP (2004) A nationwide assessment of wastewater use in Pakistan: an obscure activity or a vitally important one? Water Policy 6(3):197–206. https://doi.org/10.2166/wp.2004.0013. (PMID: 10.2166/wp.2004.0013)
      Esrey SA, Andersson I, Hillers A, Sawyer R (2000) Closing the loop: ecological sanitation for food security. Water Res.
      Fang C, Zhang T, Li P, Jiang R, Wang Y (2014) Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater:9217–9237. https://doi.org/10.3390/ijerph110909217.
      Fang C, Zhang T, Li P, Jiang R, Wu S, Nie H, Wang Y (2015a) ScienceDirect Phosphorus recovery from biogas fermentation liquid by Ca – Mg loaded biochar. JES 1–9. https://doi.org/10.1016/j.jes.2014.08.019.
      Fang L, Huang L, Holm PE, Yang X, Hansen HCB, Dongsheng W (2015b) Facile upscale synthesis of layered iron oxide nanosheets and its application for phosphate removal. J Mater Chem C 3:7505–7512. https://doi.org/10.1039/b000000x. (PMID: 10.1039/b000000x)
      Fang L, Liu R, Li J, Xu C, Huang LZ, Wang D (2018) Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles. Water Res 130:243–254. https://doi.org/10.1016/j.watres.2017.12.008. (PMID: 10.1016/j.watres.2017.12.008)
      Fang L, Li J, Shan A, Donatello S, Cheeseman CR, Poon CS, Tsang DCW (2020) Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. J Clean Prod 244:118853. https://doi.org/10.1016/j.jclepro.2019.118853. (PMID: 10.1016/j.jclepro.2019.118853)
      Fernández-Martínez M, Berloso F, Corbera J, Garcia-Porta J, Sayol F, Preece C, Sabater F (2019) Towards a moss sclerophylly continuum: evolutionary history, water chemistry and climate control traits of hygrophytic mosses. Funct Ecol 33(12):2273–2289. https://doi.org/10.1111/1365-2435.13443. (PMID: 10.1111/1365-2435.13443)
      Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490. https://doi.org/10.1021/es071445r. (PMID: 10.1021/es071445r)
      Gan F, Zhou J, Wang H, Du C, Chen X (2009) Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Water Res 43(11):2907–2915. https://doi.org/10.1016/j.watres.2009.03.051. (PMID: 10.1016/j.watres.2009.03.051)
      Ge S, Yek PNY, Cheng YW, Xia C, Wan Mahari WA, Liew RK, Peng W, Yuan TQ, Tabatabaei M, Aghbashlo M, Sonne C, Lam SS (2021) Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach. Renew Sust Energ Rev 135(August 2020):110148. https://doi.org/10.1016/j.rser.2020.110148. (PMID: 10.1016/j.rser.2020.110148)
      Gellings C, Parmenter K (2004) Energy efficiency in fertilizer production and use. Encyclopedia of life support systems (EOLSS), 1–15. http://www.eolss.net/ebooks/Sample Chapters/C08/E3-18-04-03.pdf.
      Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE (2017) Chapter 4. Metals toxic effects in aquatic ecosystems: modulators of water quality. In: Tutu H (ed) Water quality. IntechOpen, pp 59–89. https://doi.org/10.5772/62562. (PMID: 10.5772/62562)
      Ghobadian M, Nabiuni M, Parivar K, Fathi M, Pazooki J (2015) Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicol Environ Saf 122:260–267. https://doi.org/10.1016/j.ecoenv.2015.08.009. (PMID: 10.1016/j.ecoenv.2015.08.009)
      Greenburg AE, Levin G, Kauffman WJ (1955) The effect of phosphorus removal on the activated sludge process. Sewage Ind Wastes 1955;27:227.
      Guida S, Rubertelli G, Jefferson B, Soares A (2021) Demonstration of ion exchange technology for phosphorus removal and recovery from municipal wastewater. Chem Eng J 420:129913. https://doi.org/10.1016/J.CEJ.2021.129913. (PMID: 10.1016/J.CEJ.2021.129913)
      Han C, Lalley J, Iyanna N, Nadagouda MN (2017) Removal of phosphate using calcium and magnesium-modified iron-based adsorbents. Mater Chem Phys 198:115–124. https://doi.org/10.1016/j.matchemphys.2017.05.038. (PMID: 10.1016/j.matchemphys.2017.05.038)
      Hano T, Takanashi H, Hirata M, Urano K, Eto S (1997) Removal of phosphorus from wastewater by activated. Water Sci Technol 35(7):39–46. https://doi.org/10.1016/S0273-1223(97)00112-1. (PMID: 10.1016/S0273-1223(97)00112-1)
      Hao H, Wang Y, Shi B (2019) NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: synthesis and adsorption mechanistic study. Water Res 155:1–11. https://doi.org/10.1016/j.watres.2019.01.049. (PMID: 10.1016/j.watres.2019.01.049)
      Huang W, Zhu Y, Tang J, Yu X, Wang X, Li D, Zhang Y (2014) Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal. J Mater Chem A 2(23):8839–8848. https://doi.org/10.1039/c4ta00326h. (PMID: 10.1039/c4ta00326h)
      Huang W, Yu X, Tang J, Zhu Y, Zhang Y, Li D (2015) Enhanced adsorption of phosphate by flower-like mesoporous silica spheres loaded with lanthanum. Microporous Mesoporous Mater 217:225–232. https://doi.org/10.1016/j.micromeso.2015.06.031. (PMID: 10.1016/j.micromeso.2015.06.031)
      Huang W, Zhang Y, Li D (2017) Adsorptive removal of phosphate from water using mesoporous materials: a review. J Environ Manag 193:470–482. https://doi.org/10.1016/j.jenvman.2017.02.030. (PMID: 10.1016/j.jenvman.2017.02.030)
      Hultman B, Levlin E, Plaza E, Stark K, Engineering WR (2014) Phosphorus recovery from sludge in Sweden—possibilities to meet proposed goals in an efficient , sustainable and economical way. Dep. of Land and Water Water Resources Engineering, pp 19–28.
      Jack J, Huggins TM, Huang Y, Fang Y, Ren ZJ (2019) Production of magnetic biochar from waste-derived fungal biomass for phosphorus removal and recovery. J Clean Prod 224:100–106. https://doi.org/10.1016/j.jclepro.2019.03.120. (PMID: 10.1016/j.jclepro.2019.03.120)
      Jia Z, Zeng W, Xu H, Li S, Peng Y (2020) Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar. Process Saf Environ Prot 140:221–232. https://doi.org/10.1016/j.psep.2020.05.017. (PMID: 10.1016/j.psep.2020.05.017)
      Jiang C, Jia L, He Y, Zhang B, Kirumba G, Xie J (2013) Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite. J Colloid Interface Sci 402:246–252. https://doi.org/10.1016/j.jcis.2013.03.057. (PMID: 10.1016/j.jcis.2013.03.057)
      Jiang YH, Li AY, Deng H, Ye CH, Wu YQ, Linmu YD, Hang HL (2019) Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresour Technol 276(November 2018):183–189. https://doi.org/10.1016/j.biortech.2018.12.079. (PMID: 10.1016/j.biortech.2018.12.079)
      Jing X, Wang Y, Chen L, Wang Y, Yang X, Jiang Y, Yan Y (2019) Free-standing large-mesoporous silica films decorated with lanthanum as new adsorbents for efficient removal of phosphate. J Mol Liq 296:111815. https://doi.org/10.1016/j.molliq.2019.111815. (PMID: 10.1016/j.molliq.2019.111815)
      Junior S (2014) Aquatic ecologist, SOLitude Lake Management, https://www.solitudelakemanagement.com/blog/improving-pond-water-quality-through-phosphorus-reduction/ . Accessed 12 May 2021.
      Jutidamrongphan W, Park KY, Dockko S, Choi JW, Lee SH (2012) High removal of phosphate from wastewater using silica sulfate. Environ Chem Lett 10(1):21–28. https://doi.org/10.1007/s10311-011-0323-5. (PMID: 10.1007/s10311-011-0323-5)
      Kang SK, Choo KH, Lim KH (2003) Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent. Sep Sci Technol 38(15):3853–3874. https://doi.org/10.1081/SS-120024236. (PMID: 10.1081/SS-120024236)
      Kanwal Z, Raza MA, Riaz S, Naseem S (2016) Impact of chromium nanoparticles on haematological, immunological and histological parameters of Labeo rohita. World Congress on Advances in Civil, Environmental and Materials Research (ACEM’16).
      Khan MD, Khan MD, Chottitisupawong T, Vu HHT, Ahn JW, Kim GM (2020) Removal of phosphorus from an aqueous solution by nanocalcium hydroxide derived from waste bivalve seashells: mechanism and kinetics. ACS Omega 5(21):12290–12301. https://doi.org/10.1021/acsomega.0c00993. (PMID: 10.1021/acsomega.0c00993)
      Kizito S, Luo H, Wu S, Ajmal Z, Lv T, Dong R (2017) Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: dynamics of adsorption, desorption and regeneration. J Environ Manag 201:260–267. https://doi.org/10.1016/j.jenvman.2017.06.057. (PMID: 10.1016/j.jenvman.2017.06.057)
      Kleinman PJA, Sharpley AN (2003) Effect of broadcast manure on runoff phosphorus concentrations over successive rainfall events. J Environ Qual 32(3):1072–1081. https://doi.org/10.2134/JEQ2003.1072. (PMID: 10.2134/JEQ2003.1072)
      Kleinman PJA, Sharpley AN, Mcdowell RW (2011) Managing agricultural phosphorus for water quality protection : principles for progress, pp 169–182. https://doi.org/10.1007/s11104-011-0832-9. (PMID: 10.1007/s11104-011-0832-9)
      Kong L, Han M, Shih K, Su M, Diao Z, Long J, Chen D, Hou L, Peng Y (2018) Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus. Environ Pollut 233:698–705. https://doi.org/10.1016/j.envpol.2017.10.099. (PMID: 10.1016/j.envpol.2017.10.099)
      Kumari S, Jose S, Tyagi M, Jagadevan S (2020) A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. J Clean Prod 254:120037. https://doi.org/10.1016/J.JCLEPRO.2020.120037. (PMID: 10.1016/J.JCLEPRO.2020.120037)
      Kuwahara Y, Yamashita H (2017) Phosphate removal from aqueous solutions using calcium silicate hydrate prepared from blast furnace slag. ISIJ Int 57(9):1657–1664. https://doi.org/10.2355/isijinternational.ISIJINT-2017-123. (PMID: 10.2355/isijinternational.ISIJINT-2017-123)
      Kvarnström E, Emilsson K (2006) EcoSanRes publications series urine diversion : one step towards sustainable sanitation. Water 76 www.ecosanres.org/pdf_files/Urine_Diversion_2006-1.pdf.
      Lalley J, Han C, Mohan GR, Dionysiou DD, Speth TF, Garland J, Nadagouda MN (2015) Phosphate removal using modified Bayoxide® E33 adsorption media. Environ Sci Water Res Technol 1(1):96–107. https://doi.org/10.1039/c4ew00020j. (PMID: 10.1039/c4ew00020j)
      Lalley J, Han C, Li X, Dionysiou DD, Nadagouda MN (2016) Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chem Eng J 284:1386–1396. https://doi.org/10.1016/j.cej.2015.08.114. (PMID: 10.1016/j.cej.2015.08.114)
      Lee G, Modarresi S, Benjamin MM (2019) Efficient phosphorus removal from MBR effluent with heated aluminum oxide particles (HAOPs). Water Res 159:274–282. https://doi.org/10.1016/j.watres.2019.05.010. (PMID: 10.1016/j.watres.2019.05.010)
      Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512. https://doi.org/10.1016/j.envpol.2016.07.030. (PMID: 10.1016/j.envpol.2016.07.030)
      Li, G., Ittersum, M. K. Van, Leffelaar, P. A., Sattari, S. Z., Li, H., Huang, G., & Zhang, F. (2016a). A multi-level analysis of China ’ s phosphorus fl ows to identify options for improved management in agriculture. AGSY, 144, 87–100. / https://doi.org/10.1016/j.agsy.2016.01.006.
      Li M, Liu J, Xu Y, Qian G (2016b) Phosphate adsorption on metal oxides and metal hydroxides: a comparative review. Environ Rev 24(3):319–332. https://doi.org/10.1139/er-2015-0080. (PMID: 10.1139/er-2015-0080)
      Li R, Wang JJ, Zhou B, Zhang Z, Liu S, Lei S, Xiao R (2017) Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J Clean Prod 147:96–107. https://doi.org/10.1016/j.jclepro.2017.01.069. (PMID: 10.1016/j.jclepro.2017.01.069)
      Li R, Wang JJ, Zhang Z, Awasthi MK, Du D, Dang P, Huang Q, Zhang Y, Wang L (2018a) Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling. Sci Total Environ 642:526–536. https://doi.org/10.1016/j.scitotenv.2018.06.092. (PMID: 10.1016/j.scitotenv.2018.06.092)
      Li T, Su X, Yu X, Song H, Zhu Y, Zhang Y (2018b) Bioresource technology La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal. 263(April):207–213. https://doi.org/10.1016/j.biortech.2018.04.108.
      Li C, Yu Y, Li Q, Zhong H, Wang S (2019) Kinetics and equilibrium studies of phosphate removal from aqueous solution by calcium silicate hydrate synthesized from electrolytic manganese residue. Adsorpt Sci Technol 37(7–8):547–565. https://doi.org/10.1177/0263617419860620. (PMID: 10.1177/0263617419860620)
      Li X, Shen S, Xu Y, Guo T, Dai H, Lu X (2021) Application of membrane separation processes in phosphorus recovery: a review. Sci Total Environ 767:144346. https://doi.org/10.1016/J.SCITOTENV.2020.144346. (PMID: 10.1016/J.SCITOTENV.2020.144346)
      Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250. https://doi.org/10.1016/j.envpol.2007.01.016. (PMID: 10.1016/j.envpol.2007.01.016)
      Liu H, Sun X, Yin C, Hu C (2008a) Removal of phosphate by mesoporous ZrO 2. 151:616–622. https://doi.org/10.1016/j.jhazmat.2007.06.033.
      Liu Y, Villalba G, Ayres RU (2008b) Global phosphorus flows and environmental impacts from a consumption perspective. 12(2):229–247. https://doi.org/10.1111/j.1530-9290.2008.00025.x.
      Liu J, Wan L, Zhang L, Zhou Q (2011) Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber. J Colloid Interface Sci 364(2):490–496. https://doi.org/10.1016/j.jcis.2011.08.067. (PMID: 10.1016/j.jcis.2011.08.067)
      Liu F, Zuo J, Chi T, Wang P, Yang B (2015) Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar. https://doi.org/10.1007/s11783-015-0769-y.
      Liu Q, Hu P, Wang J, Zhang L, Huang R (2016) Phosphate adsorption from aqueous solutions by Zirconium (IV) loaded cross-linked chitosan particles. J Taiwan Inst Chem Eng 59:311–319. https://doi.org/10.1016/j.jtice.2015.08.012. (PMID: 10.1016/j.jtice.2015.08.012)
      Liu S, Sun Y, Wang R, Mishra SB, Duan H, Qu H (2018) Modification of sand with iron and copper derived from electroplating wastewater for efficient adsorption of phosphorus from aqueous solutions: a combinatorial approach for an effective waste minimization. J Clean Prod 200:471–477. https://doi.org/10.1016/j.jclepro.2018.07.254. (PMID: 10.1016/j.jclepro.2018.07.254)
      Liu X, Shen F, Smith RL, Qi X (2019) Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Bioresour Technol 294(38):122198. https://doi.org/10.1016/j.biortech.2019.122198. (PMID: 10.1016/j.biortech.2019.122198)
      Liu X, He X, Zhang J, Yang J, Xiang X, Ma Z, Liu L, Zong E (2020) Cerium oxide nanoparticle functionalized lignin as a nano-biosorbent for efficient phosphate removal. RSC Adv 10(3):1249–1260. https://doi.org/10.1039/C9RA09986G. (PMID: 10.1039/C9RA09986G)
      Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44(8):847–907. https://doi.org/10.1080/10643389.2012.741311. (PMID: 10.1080/10643389.2012.741311)
      Long F, Gong JL, Zeng GM, Chen L, Wang XY, Deng JH, Niu QY, Zhang HY, Zhang XR (2011) Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide. Chem Eng J 171(2):448–455. https://doi.org/10.1016/j.cej.2011.03.102. (PMID: 10.1016/j.cej.2011.03.102)
      Lǚ J, Liu H, Liu R, Zhao X, Sun L, Qu J (2013) Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent. Powder Technol 233:146–154. https://doi.org/10.1016/j.powtec.2012.08.024. (PMID: 10.1016/j.powtec.2012.08.024)
      Luo Y, Liu M, Chen Y, Wang T, Zhang W (2019) Preparation and regeneration of iron-modified nanofibres for low-concentration phosphorus-containing wastewater treatment. Royal Society Open. Science 6(9). https://doi.org/10.1098/rsos.190764.
      Ma Y, Dai W, Zheng P, Zheng X, He S, Zhao M (2020) Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands. J Hazard Mater 395(January):122612. https://doi.org/10.1016/j.jhazmat.2020.122612. (PMID: 10.1016/j.jhazmat.2020.122612)
      Mackenzie FT, Ver LM, Lerman A (2002) Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem Geol 190(1–4):13–32. https://doi.org/10.1016/S0009-2541(02)00108-0. (PMID: 10.1016/S0009-2541(02)00108-0)
      McConville JR, Kvarnström E, Jönsson H, Kärrman E, Johansson M (2017) Source separation: challenges & opportunities for transition in the swedish wastewater sector. Resour Conserv Recycl 120:144–156. https://doi.org/10.1016/j.resconrec.2016.12.004. (PMID: 10.1016/j.resconrec.2016.12.004)
      Mekonnen MM, Hoekstra AY (2018) Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resour Res 54(1):345–358. https://doi.org/10.1002/2017WR020448. (PMID: 10.1002/2017WR020448)
      Melia PM, Cundy AB, Sohi SP, Hooda PS, Busquets R (2017) Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 186:381–395. https://doi.org/10.1016/J.CHEMOSPHERE.2017.07.089. (PMID: 10.1016/J.CHEMOSPHERE.2017.07.089)
      Melia PM, Busquets R, Hooda PS, Cundy AB, Sohi SP (2019) Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars. Sci Total Environ 675:623–631. https://doi.org/10.1016/j.scitotenv.2019.04.232. (PMID: 10.1016/j.scitotenv.2019.04.232)
      Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100(5):525–544. https://doi.org/10.1086/629606. (PMID: 10.1086/629606)
      Min L, Zhongsheng Z, Zhe L, Haitao W (2020) Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar. Ecol Eng 149(April):105792. https://doi.org/10.1016/j.ecoleng.2020.105792. (PMID: 10.1016/j.ecoleng.2020.105792)
      Mitrogiannis D, Psychoyou M, Baziotis I, Inglezakis VJ, Koukouzas N, Tsoukalas N, Palles D, Kamitsos E, Oikonomou G, Markou G (2017) Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chem Eng J 320:510–522. https://doi.org/10.1016/j.cej.2017.03.063. (PMID: 10.1016/j.cej.2017.03.063)
      Mor S, Chhoden K, Negi P, Ravindra K (2017) Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater. Environment Nanotechnol Monit Manag 7:15–23. https://doi.org/10.1016/j.enmm.2016.11.006. (PMID: 10.1016/j.enmm.2016.11.006)
      Morse GK, Brett SW, Guy JA, Lester JN (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81. https://doi.org/10.1016/S0048-9697(97)00332-X. (PMID: 10.1016/S0048-9697(97)00332-X)
      Mosse KPM, Patti AF, Christen EW, Cavagnaro TR (2011) Review: winery wastewater quality and treatment options in Australia. Aust J Grape Wine Res 17(2):111–122. https://doi.org/10.1111/j.1755-0238.2011.00132.x. (PMID: 10.1111/j.1755-0238.2011.00132.x)
      Muhammad A, Soares A, Jefferson B (2019) The impact of background wastewater constituents on the selectivity and capacity of a hybrid ion exchange resin for phosphorus removal from wastewater. Chemosphere 224:494–501. https://doi.org/10.1016/J.CHEMOSPHERE.2019.01.085. (PMID: 10.1016/J.CHEMOSPHERE.2019.01.085)
      Muisa N, Nhapi I, Ruziwa W, Manyuchi MM (2020) Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: a review. J Water Process Eng 35:101187. https://doi.org/10.1016/J.JWPE.2020.101187. (PMID: 10.1016/J.JWPE.2020.101187)
      Nair SP, Aziz T, Das D, Bora JJ, Unnarkat AP, Namdeo A (2022) Production and applications of biochar. In: Li H, Saravanamurugan S, Pandey A, Elumalai S (eds) Biochemicals and materials production from sustainable biomass resources, 1st edn. Elsevier Inc., pp 263–286. https://doi.org/10.1007/s00253-004-1840-y. (PMID: 10.1007/s00253-004-1840-y)
      Nakarmi A, Chandrasekhar K, Bourdo SE, Watanabe F, Guisbiers G, Viswanathan T (2020) Phosphate removal from wastewater using novel renewable resource-based, cerium/manganese oxide-based nanocomposites. Environ Sci Pollut Res 27(29):36688–36703. https://doi.org/10.1007/S11356-00-09400-0. (PMID: 10.1007/S11356-00-09400-0)
      Nur T, Johir MAH, Loganathan P, Nguyen T, Vigneswaran S, Kandasamy J (2014) Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. J Ind Eng Chem 20(4):1301–1307. https://doi.org/10.1016/j.jiec.2013.07.009. (PMID: 10.1016/j.jiec.2013.07.009)
      Oguz E (2004) Removal of phosphate from aqueous solution with blast furnace slag. J Hazard Mater 114(1–3):131–137. https://doi.org/10.1016/j.jhazmat.2004.07.010. (PMID: 10.1016/j.jhazmat.2004.07.010)
      Palmer M, Bernhardt E, Chornesky E, Collins S, Dobson A, Duke C, Gold B, Jacobson R, Kingsland S, Kranz R, Mappin M, Martinez ML, Micheli F, Morse J, Pace M, Pascual M, Palumbi S, Reichman OJ, Simons A et al (2004) Ecology for a crowded planet. Science 304(5675):1251–1252. https://doi.org/10.1126/science.1095780. (PMID: 10.1126/science.1095780)
      Patel H, Vashi RT (2015) Chapter 2—characterization of textile wastewater. In: Patel H, Vashi RT (eds) Characterization and treatment of textile wastewater. Elsevier, pp 21–71. (PMID: 10.1016/B978-0-12-802326-6.00002-2)
      Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196. https://doi.org/10.1016/j.aquatox.2011.01.014. (PMID: 10.1016/j.aquatox.2011.01.014)
      Peng L, Dai H, Wu Y, Peng Y, Lu X (2018) A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 197:768–781. https://doi.org/10.1016/J.CHEMOSPHERE.2018.01.098. (PMID: 10.1016/J.CHEMOSPHERE.2018.01.098)
      Peng YY, He S, Wu F (2021) Biochemical processes mediated by iron-based materials in water treatement: enhancing nitrogen and phosphorus removal in low C/N ratio wastewater. Sci Total Environ 775:145137. https://doi.org/10.1016/J.SCITOTENV.2021.145137. (PMID: 10.1016/J.SCITOTENV.2021.145137)
      Pepper RA, Couperthwaite SJ, Millar GJ (2018) Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous. J Water Process Eng 25(July):138–148. https://doi.org/10.1016/j.jwpe.2018.07.006. (PMID: 10.1016/j.jwpe.2018.07.006)
      Perera MK, Englehardt JD, Dvorak AC (2019) Technologies for recovering nutrients from wastewater: a critical review. Https://Home.Liebertpub.Com/Ees. 36(5):511–529. https://doi.org/10.1089/EES.2018.0436.
      Ramesh R, Purvaja GR, Subramanian V (1995) Carbon and phosphorus transport by the major Indian rivers. J Biogeogr 22(2/3):409. https://doi.org/10.2307/2845937. (PMID: 10.2307/2845937)
      Ramesh R, Robin RS, Purvaja R (2015) An inventory on the phosphorus flux of major Indian rivers. Curr Sci 108(7):1294–1299. https://doi.org/10.18520/cs/v108/i7/1294-1299. (PMID: 10.18520/cs/v108/i7/1294-1299)
      Randall DG, Naidoo V (2018) Urine: the liquid gold of wastewater. J Environ Chem Eng 6(2):2627–2635. https://doi.org/10.1016/j.jece.2018.04.012. (PMID: 10.1016/j.jece.2018.04.012)
      Raschid-Sally L, Jayakody P (2008) Drivers and characteristics of wastewater agriculture in developing countries: results from a global assessment. IWMI Research Report 127. International Water Management Institute. In Drivers and characteristics of wastewater agriculture in developing countries: results from a global assessment (Issue 127).
      Rittmann BE, Mayer B, Westerhoff P, Edwards M (2011) Capturing the lost phosphorus. Chemosphere 84(6):846–853. https://doi.org/10.1016/j.chemosphere.2011.02.001. (PMID: 10.1016/j.chemosphere.2011.02.001)
      Robles Á, Aguado D, Barat R, Borrás L, Bouzas A, Giménez JB, Martí N, Ribes J, Ruano MV, Serralta J, Ferrer J, Seco A (2020) New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresour Technol 300:122673. https://doi.org/10.1016/J.BIORTECH.2019.122673. (PMID: 10.1016/J.BIORTECH.2019.122673)
      Rosemarin, A., de Bruijne, G. , & Caldwell, I. (2009). Peak phosphorus: the next inconvenient truth.
      Roy S, Guanglei Q, Zuniga-Montanez R, Williams RB, Wuertz S (2021) Recent advances in understanding the ecophysiology of enhanced biological phosphorus removal. Curr Opin Biotechnol 67:166–174. https://doi.org/10.1016/J.COPBIO.2021.01.011. (PMID: 10.1016/J.COPBIO.2021.01.011)
      Ryden JC, McLaughlin JR, Syers JK (1977) Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. J Soil Sci 28(1):72–92. https://doi.org/10.1111/j.1365-2389.1977.tb02297.x. (PMID: 10.1111/j.1365-2389.1977.tb02297.x)
      Salimova A, Zuo J, Liu F, Wang Y, Wang S, Verichev K (2020) Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars. Front Environ Sci Eng 14(3):1–13. https://doi.org/10.1007/s11783-020-1225-1. (PMID: 10.1007/s11783-020-1225-1)
      Santos SCR, Boaventura RAR (2015) Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent. J Hazard Mater 291:74–82. https://doi.org/10.1016/j.jhazmat.2015.02.074. (PMID: 10.1016/j.jhazmat.2015.02.074)
      Sarin MM, Krishnaswami S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53(5):997–1009. https://doi.org/10.1016/0016-7037(89)90205-6. (PMID: 10.1016/0016-7037(89)90205-6)
      Sartorius, C., Horn, J. Von, & Tettenborn, F. (2011). International conference phosphorus recovery from wastewater. State-of-the-art and future potential. Nutrient Recovery and Management, Inside and Outside the Fence.
      Schindler DW (1974) Eutrophication and recovery in experimental lakes: implications for lake management. Science 184(4139):897–899. https://doi.org/10.1126/science.184.4139.897. (PMID: 10.1126/science.184.4139.897)
      Schroder, J. J., Cordell, D., Smit, A. L., & Rosemarin, A. (2010). Sustainable use of phosphorus: EU tender ENV.B1/ETU/2009/0025 (Issue 357). Plant Research International.
      Schröder, J. J., Cordell, D., Smit, A. L., & Rosemarin, A. (2010). Sustainable use of phosphorus Report 357 (European Union tender project ENV.B.1/ETU/2009/0025). 140.
      Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19(4):1–11. https://doi.org/10.1029/2005GB002606. (PMID: 10.1029/2005GB002606)
      Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob Biogeochem Cycles 24(2). https://doi.org/10.1029/2009GB003587.
      Shan S, Zhang T, Wang W, Liu D, Shi W, Cui F (2021a) Magnetite/hydrated cerium(III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation. Chem Eng J 425:128894. https://doi.org/10.1016/J.CEJ.2021.128894. (PMID: 10.1016/J.CEJ.2021.128894)
      Shan X, Zhao Y, Bo S, Yang L, Xiao Z, An Q, Zhai S (2021b) Magnetic aminated lignin/CeO2/Fe3O4 composites with tailored interfacial chemistry and affinity for selective phosphate removal. Sci Total Environ 796:148984. https://doi.org/10.1016/J.SCITOTENV.2021.148984. (PMID: 10.1016/J.SCITOTENV.2021.148984)
      Sharpley AN, Daniel TC, Edwards DR (1993) Phosphorus movement in the landscape. J Prod Agric 6(4):492–500. https://doi.org/10.2134/jpa1993.0492. (PMID: 10.2134/jpa1993.0492)
      Smil V (2000) Phosphorus in the e nvironment: natural flows and human interferences. 53–88.
      Srinath EG, Sastry CA, Pillai SC (1959) Rapid removal of phosphorus from sewage by activated sludge. Experientia 15(9):339–340. https://doi.org/10.1007/BF02159818. (PMID: 10.1007/BF02159818)
      Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12(1):63–84. https://doi.org/10.1007/s10311-013-0430-6. (PMID: 10.1007/s10311-013-0430-6)
      Su Y, Yang W, Sun W, Li Q, Shang JK (2015) Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water. Chem Eng J 268:270–279. https://doi.org/10.1016/J.CEJ.2015.01.070. (PMID: 10.1016/J.CEJ.2015.01.070)
      Subramanian V (2000) Transfer of phosphorus from the Indian sub-continent to the adjacent oceans. Marine Authigenesis: From Global to Microbial 77–88. https://doi.org/10.2110/pec.00.66.0077.
      Sujitha R, Ravindhranath K (2017) Extraction of phosphate from polluted waters using calcium alginate beads doped with active carbon derived from A. aspera plant as adsorbent. J Anal Methods Chem 2017(Vi). https://doi.org/10.1155/2017/3610878.
      Syers, J. K., Johnston, A. E., & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behaviour with agronomic information (F. A. O. of the UN (Ed.); Issue 18, p. 108 p.). FAO.
      Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci 257(1):135–140. https://doi.org/10.1016/S0021-9797(02)00008-5. (PMID: 10.1016/S0021-9797(02)00008-5)
      Tian S, Jiang P, Ning P, Su Y (2009) Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chem Eng J 151(1–3):141–148. https://doi.org/10.1016/j.cej.2009.02.006. (PMID: 10.1016/j.cej.2009.02.006)
      Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48. https://doi.org/10.1016/S1748-0132(06)70048-2. (PMID: 10.1016/S1748-0132(06)70048-2)
      Trazzi PA, Leahy JJ, Hayes MHB, Kwapinski W (2016) Journal of Environmental Chemical Engineering Adsorption and desorption of phosphate on biochars. Biochem Pharmacol 4(1):37–46. https://doi.org/10.1016/j.jece.2015.11.005. (PMID: 10.1016/j.jece.2015.11.005)
      Tsuneda S, Ohno T, Soejima K, Hirata A (2006) Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem Eng J 27(3):191–196. https://doi.org/10.1016/J.BEJ.2005.07.004. (PMID: 10.1016/J.BEJ.2005.07.004)
      Tu YJ, You CF, Chang CK, Chen MH (2015) Application of magnetic nano-particles for phosphorus removal/recovery in aqueous solution. J Taiwan Inst Chem Eng 46:148–154. https://doi.org/10.1016/j.jtice.2014.09.016. (PMID: 10.1016/j.jtice.2014.09.016)
      UNEP. (2016). A snapshot of the world’s water quality: towards a global assessment.
      UNEP and UN-Habitat (2010) Sick water: the central role of wastewater management in sustainable development—a rapid response assessment. [UNEP/GRID-Arendal].
      UNICEF (2021) Water scarcity: addressing the growing lack of available water to meet children’s needs.
      UN-Water (2021) Summary progress update 2021: SDG 6-water and sanitation for all.
      Vaccari DA (2009) Phosphorus: a looming crisis. Sci Am 300(6):54–59. (PMID: 10.1038/scientificamerican0609-54)
      Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970-2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20(3):428–439. https://doi.org/10.1016/j.gloenvcha.2010.04.004. (PMID: 10.1016/j.gloenvcha.2010.04.004)
      Vikrant K, Kim KH, Ok YS, Tsang DCW, Tsang YF, Giri BS, Singh RS (2018) Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci Total Environ 616–617:1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193. (PMID: 10.1016/j.scitotenv.2017.10.193)
      Wan S, Wang S, Li Y, Gao B (2016) Functionalizing biochar with Mg – Al and Mg – Fe layered double hydroxides for removal of phosphate from aqueous solutions. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2016.11.039.
      Wang S, Chandrasekhara Rao N, Qiu R, Moletta R (2009) Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresour Technol 100(23):5641–5647. https://doi.org/10.1016/j.biortech.2009.06.028. (PMID: 10.1016/j.biortech.2009.06.028)
      Wang W, Zhang H, Zhang L, Wan H, Zheng S, Xu Z (2015) Adsorptive removal of phosphate by magnetic Fe3O4@C@ZrO2. Colloids Surf A Physicochem Eng Asp 469:100–106. https://doi.org/10.1016/j.colsurfa.2015.01.002. (PMID: 10.1016/j.colsurfa.2015.01.002)
      Wang D, Chen N, Yu Y, Hu W, Feng C (2016a) Investigation on the adsorption of phosphorus by Fe-loaded ceramic adsorbent. J Colloid Interface Sci 464:277–284. https://doi.org/10.1016/j.jcis.2015.11.039. (PMID: 10.1016/j.jcis.2015.11.039)
      Wang Z, Shen D, Shen F, Li T (2016b) Phosphate adsorption on lanthanum loaded biochar. Chemosphere 150:1–7. https://doi.org/10.1016/j.chemosphere.2016.02.004. (PMID: 10.1016/j.chemosphere.2016.02.004)
      Wang S, Kong L, Long J, Su M, Diao Z, Chang X, Chen D, Song G, Shih K (2018) Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies. Chemosphere 195:666–672. https://doi.org/10.1016/j.chemosphere.2017.12.101. (PMID: 10.1016/j.chemosphere.2017.12.101)
      WHO, & UNEP (2006) Safe use of wastewater, excreta and greywater guidelines. Volume 4: Excreta and greywater use in agriculture. Who, IV, 204. http://whqlibdoc.who.int/publications/2006/9241546832_eng.pdf.
      Wong SWY, Leung PTY, Djurišić AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396(2):609–618. https://doi.org/10.1007/s00216-009-3249-z. (PMID: 10.1007/s00216-009-3249-z)
      World Bank, 2005 (2005) Water resources and environment technical note F.3 wastewater reuse series. In: Richard Davis, Rafik Hirji (Eds.), Washington, DC. World Resources Institute, 2008. Agriculture and ‘“dead zones”’. Available: http://www.wri.org/publication/content/7780.
      Wu L, Zhang S, Wang J, Ding X (2020) Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: adsorption, column and field tests. Environ Pollut 261:114223. https://doi.org/10.1016/j.envpol.2020.114223. (PMID: 10.1016/j.envpol.2020.114223)
      Xia WJ, Xu LZJ, Yu LQ, Zhang Q, Zhao YH, Xiong JR, Zhu XY, Fan NS, Huang BC, Jin RC (2020) Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. In Science of the total environment, vol 705. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.135959. (PMID: 10.1016/j.scitotenv.2019.135959)
      Xie Q, Li Y, Lv Z, Zhou H, Yang X, Chen J, Guo H (2017) Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Sci Rep 7(1):1–15. https://doi.org/10.1038/s41598-017-03526-x. (PMID: 10.1038/s41598-017-03526-x)
      Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452. https://doi.org/10.1016/j.scitotenv.2011.01.015. (PMID: 10.1016/j.scitotenv.2011.01.015)
      Xiong W, Tong J, Yang Z, Zeng G, Zhou Y, Wang D, Song P, Xu R, Zhang C, Cheng M (2017) Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: performance and mechanism. J Colloid Interface Sci 493:17–23. https://doi.org/10.1016/j.jcis.2017.01.024. (PMID: 10.1016/j.jcis.2017.01.024)
      Xu L (2015) Impact of climate change and human activity on the eco-environment. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45003-1. (PMID: 10.1007/978-3-662-45003-1)
      Xu X, Zhao Y, Sima J, Zhao L, Mašek O, Cao X (2017) Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Bioresour Technol 241:887–899. https://doi.org/10.1016/j.biortech.2017.06.023. (PMID: 10.1016/j.biortech.2017.06.023)
      Xu K, Lin F, Dou X, Zheng M, Tan W, Wang C (2018) Recovery of ammonium and phosphate from urine as value-added fertilizer usingwood waste biochar loaded with magnesium oxides. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.03.206.
      Xu X, Cheng Y, Wu X, Fan P, Song R (2020) La(III)-bentonite/chitosan composite: a new type adsorbent for rapid removal of phosphate from water bodies. Appl Clay Sci 190(March):105547. https://doi.org/10.1016/j.clay.2020.105547. (PMID: 10.1016/j.clay.2020.105547)
      Xu W, Zheng W, Wang F, Xiong Q, Shi XL, Kalkhajeh YK, Xu G, Gao H (2021) Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate. Chem Eng J 403(July 2020):126349. https://doi.org/10.1016/j.cej.2020.126349. (PMID: 10.1016/j.cej.2020.126349)
      Yang Q, Wang X, Luo W, Sun J, Xu Q, Chen F (2017) Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. In Bioresource Technology. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.09.136. (PMID: 10.1016/j.biortech.2017.09.136)
      Yang W, Shi X, Dong H, Tang H, Chen W, Wu M, Hua M, Zhang W (2021) Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal. Chem Eng J 405:126649. https://doi.org/10.1016/J.CEJ.2020.126649. (PMID: 10.1016/J.CEJ.2020.126649)
      Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190(1–3):501–507. https://doi.org/10.1016/j.jhazmat.2011.03.083. (PMID: 10.1016/j.jhazmat.2011.03.083)
      Yao Y, Gao B, Chen J, Zhang M, Inyang M, Li Y, Alva A, Yang L (2013) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13. https://doi.org/10.1016/j.biortech.2013.03.057. (PMID: 10.1016/j.biortech.2013.03.057)
      Yin H, Kong M (2014) Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent. Desalination 351:128–137. https://doi.org/10.1016/j.desal.2014.07.029. (PMID: 10.1016/j.desal.2014.07.029)
      Yuan Z, Pratt S, Batstone DJ (2012) Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol 23(6):878–883. https://doi.org/10.1016/J.COPBIO.2012.08.001. (PMID: 10.1016/J.COPBIO.2012.08.001)
      Yuan L, Qiu Z, Yuan L, Tariq M, Lu Y, Yang J, Li Z, Lyu S (2019) Adsorption and mechanistic study for phosphate removal by magnetic Fe3O4-doped spent FCC catalysts adsorbent. Chemosphere 219:183–190. https://doi.org/10.1016/j.chemosphere.2018.11.132. (PMID: 10.1016/j.chemosphere.2018.11.132)
      Zamparas M, Gianni A, Stathi P, Deligiannakis Y, Zacharias I (2012) Removal of phosphate from natural waters using innovative modified bentonites. Appl Clay Sci 62–63:101–106. https://doi.org/10.1016/j.clay.2012.04.020. (PMID: 10.1016/j.clay.2012.04.020)
      Zeng L, Li X, Liu J (2004) Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Res 38(5):1318–1326. https://doi.org/10.1016/j.watres.2003.12.009. (PMID: 10.1016/j.watres.2003.12.009)
      Zhang G, Liu H, Liu R, Qu J (2009) Removal of phosphate from water by a Fe-Mn binary oxide adsorbent. J Colloid Interface Sci 335(2):168–174. https://doi.org/10.1016/j.jcis.2009.03.019. (PMID: 10.1016/j.jcis.2009.03.019)
      Zhang L, Hu P, Wang J, Huang R (2016) Adsorption of Amido Black 10B from aqueous solutions onto Zr (IV) surface-immobilized cross-linked chitosan/bentonite composite. Appl Surf Sci 369:558–566. https://doi.org/10.1016/j.apsusc.2016.01.217. (PMID: 10.1016/j.apsusc.2016.01.217)
      Zhang Z, Yan L, Yu H, Yan T, Li X (2019a) Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: fast removal and mechanistic studies. Bioresour Technol 284(February):65–71. https://doi.org/10.1016/j.biortech.2019.03.113. (PMID: 10.1016/j.biortech.2019.03.113)
      Zhang Z, Wang X, Zhao J (2019b) Phosphate recovery from wastewater using calcium silicate hydrate (C-S-H): sonochemical synthesis and properties. Environ Sci Water Res Technol 5(1):131–139. https://doi.org/10.1039/c8ew00643a. (PMID: 10.1039/c8ew00643a)
      Zhang Y, Qin J, Wang X, Chen Z, Zheng X, Chen Y (2021) Advanced treatment of phosphorus-containing tail water by Fe–Mg–Zr layered double hydroxide beads: performance and mechanism. J Environ Manag 296:113203. https://doi.org/10.1016/J.JENVMAN.2021.113203. (PMID: 10.1016/J.JENVMAN.2021.113203)
      Zhao Y, Wang J, Luan Z, Peng X, Liang Z, Shi L (2009) Removal of phosphate from aqueous solution by red mud using a factorial design. J Hazard Mater 165(1–3):1193–1199. https://doi.org/10.1016/J.JHAZMAT.2008.10.114. (PMID: 10.1016/J.JHAZMAT.2008.10.114)
      Zhou K, Wu B, Su L, Gao X, Chai X, Dai X (2017) Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chem Eng J 328:35–43. https://doi.org/10.1016/j.cej.2017.06.059. (PMID: 10.1016/j.cej.2017.06.059)
      Zhu Z, Zeng H, Zhu Y, Yang F, Zhu H, Qin H, Wei W (2013) Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe 3O4/C with eucalyptus wood microstructure. Sep Purif Technol 117:124–130. https://doi.org/10.1016/j.seppur.2013.05.048. (PMID: 10.1016/j.seppur.2013.05.048)
      Zhu Z, Huang CP, Zhu Y, Wei W, Qin H (2018) A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. J Water Process Eng 25(May):96–104. https://doi.org/10.1016/j.jwpe.2018.05.010. (PMID: 10.1016/j.jwpe.2018.05.010)
      Zong E, Wei D, Wan H, Zheng S, Xu Z, Zhu D (2013) Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide. Chem Eng J 221:193–203. https://doi.org/10.1016/j.cej.2013.01.088. (PMID: 10.1016/j.cej.2013.01.088)
    • Contributed Indexing:
      Keywords: Adsorbents; Adsorption; Eutrophication; Phosphorus
    • Accession Number:
      0 (Phosphates)
      0 (Soil)
      059QF0KO0R (Water)
      27YLU75U4W (Phosphorus)
    • Publication Date:
      Date Created: 20220319 Date Completed: 20220523 Latest Revision: 20220523
    • Publication Date:
      20240105
    • Accession Number:
      10.1007/s11356-022-19662-5
    • Accession Number:
      35304717