Ultrasonic-assisted decoration of Ag 2 WO 4 , AgI, and Ag nanoparticles over tubular g-C 3 N 4 : Plasmonic photocatalysts for impressive removal of tetracycline under visible light.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: England NLM ID: 101124451 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1474-9092 (Electronic) Linking ISSN: 1474905X NLM ISO Abbreviation: Photochem Photobiol Sci Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [London] : Springer
      Original Publication: Cambridge, UK : Royal Society of Chemistry, c2002-
    • Subject Terms:
    • Abstract:
      The development of an efficient, eco-friendly, and low-cost photocatalyst is essential for addressing environmental and energy crises. In this regard, we report novel plasmonic photocatalysts through adorning tubular g-C 3 N 4 with Ag 2 WO 4 , Ag, and AgI nanoparticles (TGCN/Ag/Ag 2 WO 4 /AgI) fabricated via a facile ultrasonic-irradiation procedure. The TGCN/Ag/Ag 2 WO 4 /AgI (20%) nanocomposite presented the excellent photocatalytic ability for removal of tetracycline hydrochloride under visible light, which was almost 45.6, 4.03, and 1.32 times more than GCN, TGCN, and TGCN/Ag/Ag 2 WO 4 (20%) photocatalysts, respectively. Interestingly, the photocatalyst displayed impressive ability for the degradations of amoxicilline, rhodamine B, methyl orange, fuchsine, and methylene blue, which was 14.7, 52.2, 9.8, 13.2, and 7.46 times as much as pure GCN. The outcomes of DRS, PL, EIS, and photocurrent density analyses proved that the impressive activity could be related to the highly promoted harvesting of visible light, segregation of charge carriers, and improved charge migrations. In addition, trapping tests exhibited that O 2 - and h + were active species in the photocatalysis process.
      (© 2022. The Author(s), under exclusive licence to European Photochemistry Association, European Society for Photobiology.)
    • References:
      Singh, P., Shandilya, P., Raizada, P., Sudhaik, A., Rahmani-Sani, A., & Hosseini-Bandegharaei, A. (2020). Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal of Chemistry, 13, 3498–3520. (PMID: 10.1016/j.arabjc.2018.12.001)
      Long, C., Jiang, Z., Shangguan, J., Qing, T., Zhang, P., & Feng, B. (2021). Applications of carbon dots in environmental pollution control: A review. Chemical Engineering Journal, 406, 126848. (PMID: 10.1016/j.cej.2020.126848)
      Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Research, 139, 118–131. (PMID: 2963118710.1016/j.watres.2018.03.042)
      Liu, H., Wang, C., & Wang, G. (2020). Photocatalytic advanced oxidation processes for water treatment: Recent advances and perspective. Chemistry–An Asian Journal, 15, 3239–3253. (PMID: 3286046810.1002/asia.202000895)
      Matafonova, G., & Batoev, V. (2018). Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review. Water Research, 132, 177–189. (PMID: 2933164010.1016/j.watres.2017.12.079)
      Anandan, S., Ponnusamy, V. K., & Ashokkumar, M. (2020). A review on hybrid techniques for the degradation of organic pollutants in aqueous environment. Ultrasonics Sonochemistry, 67, 105130. (PMID: 3231597210.1016/j.ultsonch.2020.105130)
      Raizada, P., Sudhaik, A., & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Materials Science for Energy Technologies, 2, 509–525. (PMID: 10.1016/j.mset.2019.04.007)
      Chaibakhsh, N., & Moradi-Shoeili, Z. (2019). Enzyme mimetic activities of spinel substituted nanoferrites (MFe 2 O 4 ), a review of synthesis, mechanism and potential applications. Materials Science and Engineering: C, 99, 1424–1447. (PMID: 10.1016/j.msec.2019.02.086)
      Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., & Huo, S. (2020). Photocatalytic degradation of organic pollutants using TiO 2 -based photocatalyst: A review. Journal of Cleaner Production, 268, 121725. (PMID: 10.1016/j.jclepro.2020.121725)
      Sun, C., Yang, J., Xu, M., Cui, Y., Ren, W., Zhang, J., Zhao, H., & Liang, B. (2021). Recent intensification strategies of SnO 2 -based photocatalysts: A review. Chemical Engineering Journal, 427, 131564. (PMID: 10.1016/j.cej.2021.131564)
      Madi, M., Tahir, M., & Tasleem, S. (2021). Advances in structural modification of perovskite semiconductors for visible-light assisted photocatalytic CO 2 reduction to renewable solar fuels: A review. Journal of Environmental Chemical Engineering, 9, 106264. (PMID: 10.1016/j.jece.2021.106264)
      Arunachalam, P., Nagai, K., Amer, M. S., Ghanem, M. A., Ramalingam, R. J., & Al-Mayouf, A. M. (2021). Recent developments in the use of heterogeneous semiconductor photocatalyst based materials for a visible-light-induced water-splitting system—A brief review. Catalysts, 11, 160. (PMID: 10.3390/catal11020160)
      Ekande, O. S., & Kumar, M. (2021). Review on polyaniline as reductive photocatalyst for the construction of the visible light active heterojunction for the generation of reactive oxygen species. Journal of Environmental Chemical Engineering, 9, 105725. (PMID: 10.1016/j.jece.2021.105725)
      Tian, D., Zhou, H., Zhang, H., Zhou, P., You, J., Gang, Y., Pan, Z., Liu, Y., & Lai, B. (2021). Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies. Chemical Engineering Journal, 428, 131166. (PMID: 10.1016/j.cej.2021.131166)
      Song, B., Zeng, Z., Zeng, G., Gong, J., Xiao, R., Ye, S., Chen, M., Lai, C., Xu, P., & Tang, X. (2019). Powerful combination of g-C 3 N 4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications. Advances in Colloid and Interface Science, 272, 101999. (PMID: 3142145510.1016/j.cis.2019.101999)
      Patnaik, S., Sahoo, D. P., & Parida, K. (2020). Recent advances in anion doped g-C 3 N 4 photocatalysts: A review. Carbon, 172, 682–711. (PMID: 10.1016/j.carbon.2020.10.073)
      Zhang, S., Gu, P., Ma, R., Luo, C., Wen, T., Zhao, G., Cheng, W., & Wang, X. (2019). Recent developments in fabrication and structure regulation of visible-light-driven g-C 3 N 4 -based photocatalysts towards water purification: A critical review. Catalysis Today, 335, 65–77. (PMID: 10.1016/j.cattod.2018.09.013)
      Mishra, A., Mehta, A., Basu, S., Shetti, N. P., Reddy, K. R., & Aminabhavi, T. M. (2019). Graphitic carbon nitride (g–C 3 N 4 )–based metal-free photocatalysts for water splitting: A review. Carbon, 149, 693–721. (PMID: 10.1016/j.carbon.2019.04.104)
      Zhang, C., Li, Y., Shuai, D., Shen, Y., Xiong, W., & Wang, L. (2019). Graphitic carbon nitride (g-C 3 N 4 )-based photocatalysts for water disinfection and microbial control: A review. Chemosphere, 214, 462–479. (PMID: 3027388010.1016/j.chemosphere.2018.09.137)
      Zhang, M., Yang, Y., An, X., & Hou, L.-A. (2021). A critical review of g-C 3 N 4 -based photocatalytic membrane for water purification. Chemical Engineering Journal, 412, 128663. (PMID: 10.1016/j.cej.2021.128663)
      Wang, W., Zeng, Z., Zeng, G., Zhang, C., Xiao, R., Zhou, C., Xiong, W., Yang, Y., Lei, L., Liu, Y., Huang, D., Cheng, M., Yang, Y., Fu, Y., Luo, H., & Zhou, Y. (2019). Sulfur doped carbon quantum dots loaded hollow tubular g-C 3 N 4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light. Chemical Engineering Journal, 378, 122132. (PMID: 10.1016/j.cej.2019.122132)
      Liang, Q., Liu, X., Wang, J., Liu, Y., Liu, Z., Tang, L., Shao, B., Zhang, W., Gong, S., Cheng, M., He, Q., & Feng, C. (2021). In-situ self-assembly construction of hollow tubular g-C 3 N 4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. Journal of Hazardous Materials, 401, 123355. (PMID: 3265958010.1016/j.jhazmat.2020.123355)
      Wang, S., Zhang, J., Li, B., Sun, H., & Wang, S. (2021). Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: A Review. Energy & Fuels, 35, 6504–6526. (PMID: 10.1021/acs.energyfuels.1c00503)
      Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428. (PMID: 10.1016/j.enmm.2021.100428)
      Naghizadeh-Alamdari, S., Habibi-Yangjeh, A., & Pirhashemi, M. (2015). One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts. Solid State Sciences, 40, 111–120. (PMID: 10.1016/j.solidstatesciences.2015.01.007)
      Pirhashemi, M., & Habibi-Yangjeh, A. (2017). Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. Journal of Colloid and Interface Science, 491, 216–229. (PMID: 2803351810.1016/j.jcis.2016.12.044)
      Hemmati-Eslamlu, P., Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Chand, H., & Krishnan, V. (2021). Integration g-C 3 N 4 nanotubes and Sb 2 MoO 6 nanoparticles, Impressive photoactivity for tetracycline degradation, Cr (VI) reduction, and organic dyes removals under visible light. Advanced Powder Technology, 32, 2322–2335. (PMID: 10.1016/j.apt.2021.05.007)
      Mei, F., Zhang, J., Liang, C. H., & Dai, K. (2021). Fabrication of novel CoO/porous graphitic carbon nitride S-scheme heterojunction for efficient CO 2 photoreduction. Materials Letters, 282, 128722. (PMID: 10.1016/j.matlet.2020.128722)
      Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Hameedha Beevi, A., Anand, M., Ramakritinan, C. M., & Kumaraguru, A. K. (2018). Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine, 2, 30–35. (PMID: 10.1016/j.flm.2018.04.002)
      Zhou, L., Li, Y., Yang, S., Zhang, M., Wu, Z., Jin, R., & Xing, Y. (2021). Preparation of novel 0D/2D Ag 2 WO 4 /WO 3 Step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chemical Engineering Journal, 420, 130361. (PMID: 10.1016/j.cej.2021.130361)
      Ghanbari, M., Soofivand, F., & Salavati-Niasari, M. (2016). Simple synthesis and characterization of Ag 2 CdI 4 /AgI nanocomposite as an effective photocatalyst by co-precipitation method. Journal of Molecular Liquids, 223, 21–28. (PMID: 10.1016/j.molliq.2016.07.117)
      Chen, Z., Guo, F., Sun, H., Shi, Y., & Shi, W. (2021). Well-designed three-dimensional hierarchical hollow tubular g-C 3 N 4 /ZnIn 2 S 4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 607, 1391–1401. (PMID: 3458304410.1016/j.jcis.2021.09.095)
      Wang, L., Zhang, W., Su, Y., Liu, Z., & Du, C. (2021). Halloysite derived 1D mesoporous tubular g-C 3 N 4 : Synergy of template effect and associated carbon for boosting photocatalytic performance toward tetracycline removal. Applied Clay Science, 213, 106238. (PMID: 10.1016/j.clay.2021.106238)
      Cui, D. H., Zheng, Y. F., & Song, X. C. (2017). A novel visible-light-driven photocatalyst Ag 2 O/AgI with highly enhanced photocatalytic performances. Journal of Alloys and Compounds, 701, 163–169. (PMID: 10.1016/j.jallcom.2017.01.106)
      Xu, H., Cao, Y., Xie, J., Hu, J., Li, Y., & Jia, D. (2018). A construction of Ag-modified raspberry-like AgCl/Ag 2 WO 4 with excellent visible-light photocatalytic property and stability. Materials Research Bulletin, 102, 342–352. (PMID: 10.1016/j.materresbull.2018.02.047)
      Dai, K., Lv, J., Lu, L., Liang, C., Geng, L., & Zhu, G. (2016). A facile fabrication of plasmonic g-C 3 N 4 /Ag 2 WO 4 /Ag ternary heterojunction visible-light photocatalyst. Materials Chemistry and Physics, 177, 529–537. (PMID: 10.1016/j.matchemphys.2016.04.065)
      Zhang, W., Zhou, L., Shi, J., & Deng, H. (2017). Fabrication of novel visible-light-driven AgI/g-C 3 N 4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. Journal of Colloid and Interface Science, 496, 167–176. (PMID: 2822230410.1016/j.jcis.2017.02.022)
      Zhang, H., Tang, G., Wan, X., Xu, J., & Tang, H. (2020). High-efficiency all-solid-state Z-scheme Ag 3 PO 4 /g-C 3 N 4 /MoSe 2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination. Applied Surface Science, 530, 147234. (PMID: 10.1016/j.apsusc.2020.147234)
      Rajendran, R., Vignesh, S., Sasireka, A., Suganthi, S., Raj, V., Baskaran, P., Shkir, M., & AlFaify, S. (2021). Designing Ag 2 O modified g-C 3 N 4 /TiO 2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light: Synergistic mechanism insight. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127472. (PMID: 10.1016/j.colsurfa.2021.127472)
      Mohamed, N. A., Ismail, A. F., Safaei, J., Johan, M. R., & Teridi, M. A. M. (2021). A novel photoanode based on Thorium oxide (ThO 2 ) incorporated with graphitic carbon nitride (g-C 3 N 4 ) for photoelectrochemical water splitting. Applied Surface Science, 569, 151043. (PMID: 10.1016/j.apsusc.2021.151043)
      Akulinkin, A., Bolgaru, K., & Reger, A. (2021). Facile synthesis of porous g-C 3 N 4 /β-SiAlON material with visible light photocatalytic activity. Materials Letters, 305, 130788. (PMID: 10.1016/j.matlet.2021.130788)
      Liu, J., Li, J., He, S., Sun, L., Yuan, X., & Xia, D. (2020). Heterogeneous catalytic ozonation of oxalic acid with an effective catalyst based on copper oxide modified g-C 3 N 4 . Separation and Purification Technology, 234, 116120. (PMID: 10.1016/j.seppur.2019.116120)
      Kokilavani, S., Syed, A., Thomas, A. M., Elgorban, A. M., Al-Rashed, S., Raju, L. L., & Khan, S. S. (2021). Integrating Ag 2 WO 4 on VS 4 nanoplates with synergy of plasmonic photocatalysis and boosted visible-light harvesting and its antibacterial applications. Journal of Alloys and Compounds, 865, 158810. (PMID: 10.1016/j.jallcom.2021.158810)
      Huang, H., Li, Y.-X., Wang, H.-L., & Jiang, W.-F. (2021). In situ fabrication of ultrathin-g-C 3 N 4 /AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution. Applied Surface Science, 538, 148132. (PMID: 10.1016/j.apsusc.2020.148132)
      Zhu, Y., Wan, T., Wen, X., Chu, D., & Jiang, Y. (2019). Tunable type I and II heterojunction of CoO x nanoparticles confined in g-C 3 N 4 nanotubes for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 244, 814–822. (PMID: 10.1016/j.apcatb.2018.12.015)
      Nagajyothi, P. C., Pandurangan, M., Vattikuti, S. V. P., Tettey, C. O., Sreekanth, T. V. M., & Shim, J. (2017). Enhanced photocatalytic activity of Ag/g-C 3 N 4 composite. Separation and Purification Technology, 188, 228–237. (PMID: 10.1016/j.seppur.2017.07.026)
      Mousavi, M., & Habibi-Yangjeh, A. (2018). Magnetically recoverable highly efficient visible-light-active g-C 3 N 4 /Fe 3 O 4 /Ag 2 WO 4 /AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Advanced Powder Technology, 29, 94–105. (PMID: 10.1016/j.apt.2017.10.016)
      Rajput, R. B., & Kale, R. B. (2021). Hydro/solvothermally synthesized visible light driven modified SnO 2 heterostructure as a photocatalyst for water remediation: A review. Environmental Advances, 5, 100081. (PMID: 10.1016/j.envadv.2021.100081)
      Jaleh, B., Nasrollahzadeh, M., Nasri, A., Eslamipanah, M., Moradi, A., & Nezafat, Z. (2021). Biopolymer-derived (nano) catalysts for hydrogen evolution via hydrolysis of hydrides and electrochemical and photocatalytic techniques: A review. International Journal of Biological Macromolecules, 182, 1056–1090. (PMID: 3387261710.1016/j.ijbiomac.2021.04.087)
      Ji, X., Liu, X., Guo, Y., & Zhang, J. (2021). Developing visible light responsive Z-scheme BN-PDI photocatalysts with good degradation performance for antibiotics. Chemical Engineering Journal, 425, 131260. (PMID: 10.1016/j.cej.2021.131260)
      Ma, B., Zhao, J., Ge, Z., Chen, Y., & Yuan, Z. (2020). 5 nm NiCoP nanoparticles coupled with gC 3 N 4 as high-performance photocatalyst for hydrogen evolution. Science China Materials, 63, 258–266. (PMID: 10.1007/s40843-019-1181-y)
      Ma, R., Zhang, S., Wen, T., Gu, P., Li, L., Zhao, G., Niu, F., Huang, Q., Tang, Z., & Wang, X. (2019). A critical review on visible-light-response CeO 2 -based photocatalysts with enhanced photooxidation of organic pollutants. Catalysis Today, 335, 20–30. (PMID: 10.1016/j.cattod.2018.11.016)
      Mousavi, M., Habibi-Yangjeh, A., & Rahim Pouran, S. (2018). Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. Journal of Materials Science: Materials in Electronics, 29, 1719–1747.
    • Contributed Indexing:
      Keywords: Amoxicilline; Plasmonic photocayalyst; Tetracycline hydrochloride; Visible-light photocatalysis; g-C3N4 tubular/Ag/Ag2WO4/AgI
    • Accession Number:
      0 (Anti-Bacterial Agents)
      3M4G523W1G (Silver)
      F8VB5M810T (Tetracycline)
    • Publication Date:
      Date Created: 20220405 Date Completed: 20220805 Latest Revision: 20220805
    • Publication Date:
      20240105
    • Accession Number:
      10.1007/s43630-022-00209-z
    • Accession Number:
      35380390