FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      SARS-CoV-2 can cause acute respiratory distress and death in some patients 1 . Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear 2 . Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators 3 . Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.
      (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
    • Comments:
      Update of: Res Sq. 2021 Aug 11;:. (PMID: 34401873)
      Comment in: Trends Immunol. 2022 Jun;43(6):417-419. (PMID: 35537983)
      Comment in: Signal Transduct Target Ther. 2022 Jul 23;7(1):250. (PMID: 35871170)
    • References:
      Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021). (PMID: 10.1038/s41579-020-00459-733024307)
      Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 26, 1636–1643 (2020). (PMID: 10.1038/s41591-020-1051-9328396247869028)
      Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021). (PMID: 10.1038/s41573-021-00154-z336925497944254)
      Akbar, A. N. & Gilroy, D. W. Aging immunity may exacerbate COVID-19. Science 369, 256–257 (2020). (PMID: 10.1126/science.abb076232675364)
      Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011). (PMID: 10.1182/blood-2010-07-273417213040993083294)
      Wu, C. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 180, 934–943 (2020). (PMID: 10.1001/jamainternmed.2020.099432167524)
      Vora, S. M., Lieberman, J. & Wu, H. Inflammasome activation at the crux of severe COVID-19. Nat. Rev. Immunol. 21, 694–703 (2021). (PMID: 10.1038/s41577-021-00588-x343736228351223)
      Long, Q. X. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26, 845–848 (2020). (PMID: 10.1038/s41591-020-0897-132350462)
      Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020). (PMID: 10.1126/science.abc6027326610597402632)
      Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021). (PMID: 10.1084/jem.2020170733231615)
      Chan, A. H. & Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217, e20190314 (2020). (PMID: 10.1084/jem.2019031431611248)
      Filbin, M. R. et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep. Med. 2, 100287 (2021). (PMID: 10.1016/j.xcrm.2021.100287339693208091031)
      Pan, P. et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat. Commun. 12, 4664 (2021). (PMID: 10.1038/s41467-021-25015-6343413538329225)
      Sharma, D. & Kanneganti, T. D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol. 213, 617–629 (2016). (PMID: 10.1083/jcb.201602089273257894915194)
      Fung, S.-Y., Yuen, K.-S., Ye, Z.-W., Chan, C.-P. & Jin, D.-Y. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect. 9, 558–570 (2020). (PMID: 10.1080/22221751.2020.173664432172672)
      Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L. F. Lessons from the host defences of bats, a unique viral reservoir. Nature 589, 363–370 (2021). (PMID: 10.1038/s41586-020-03128-033473223)
      Davis, M. A. et al. Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc. Natl Acad. Sci. USA 116, 5061–5070 (2019). (PMID: 10.1073/pnas.1818598116307961926421439)
      Spel, L. & Martinon, F. Detection of viruses by inflammasomes. Curr. Opinion Virol. 46, 59–64 (2021). (PMID: 10.1016/j.coviro.2020.10.001)
      Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019). (PMID: 10.1038/s41467-019-09397-2309760766459836)
      Swanson, K. V. et al. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 214, 3611–3626 (2017). (PMID: 10.1084/jem.20171749290304585716045)
      Zheng, J. et al. Severe acute respiratory syndrome coronavirus 2-induced immune activation and death of monocyte-derived human macrophages and dendritic cells. J. Infect. Dis. 223, 785–795 (2021). (PMID: 10.1093/infdis/jiaa75333277988)
      Song, X. et al. Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages. Cytometry A, https://doi.org/10.1002/cyto.a.24285 (2020).
      Ragotte, R. J. et al. Human basigin (CD147) does not directly interact with SARS-CoV-2 spike glycoprotein. mSphere 6, e0064721 (2021). (PMID: 10.1128/mSphere.00647-2134378982)
      Shilts, J., Crozier, T. W. M., Greenwood, E. J. D., Lehner, P. J. & Wright, G. J. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci. Rep. 11, 413 (2021). (PMID: 10.1038/s41598-020-80464-1334320677801465)
      Wang, K. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 5, 283 (2020). (PMID: 10.1038/s41392-020-00426-x332774667714896)
      Bruhns, P. & Jonsson, F. Mouse and human FcR effector functions. Immunol. Rev. 268, 25–51 (2015). (PMID: 10.1111/imr.1235026497511)
      Ong, S.-M. et al. A novel, five-marker alternative to CD16–CD14 gating to identify the three human monocyte subsets. Front. Immunol. 10, 1761 (2019). (PMID: 10.3389/fimmu.2019.01761314029186676221)
      Bournazos, S., Gupta, A. & Ravetch, J. V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20, 633–643 (2020). (PMID: 10.1038/s41577-020-00410-032782358)
      Li, K. et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat. Commun. 11, 6044 (2020). (PMID: 10.1038/s41467-020-19943-y332471527699636)
      Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80, 5059–5064 (2006). (PMID: 10.1128/JVI.80.10.5059-5064.2006166412971472073)
      Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848 (2020). (PMID: 10.1016/j.chom.2020.04.004322892637153529)
      Clark, S. A. et al. Molecular basis for a germline-biased neutralizing antibody response to SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2020.11.13.381533 (2020).
      Chakraborty, S. et al. Proinflammatory IgG Fc structures in patients with severe COVID-19. Nat. Immunol. 22, 67–73 (2021). (PMID: 10.1038/s41590-020-00828-733169014)
      Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, eabc8378 (2021). (PMID: 10.1126/science.abc837833361116)
      Hoepel, W. et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci. Transl. Med. 13, eabf8654 (2021). (PMID: 10.1126/scitranslmed.abf865433979301)
      Ackermann, M. et al. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 28, 3125–3139 (2021). (PMID: 10.1038/s41418-021-00805-z340315438142290)
      Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020). (PMID: 10.1016/j.cell.2020.02.052321426517102627)
      Hui, K. P. Y. et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 8, 687–695 (2020). (PMID: 10.1016/S2213-2600(20)30193-4323865717252187)
      Garcia-Beltran, W. F. et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 184, 476–488 (2021). (PMID: 10.1016/j.cell.2020.12.01533412089)
      Shen, C. et al. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759–5774 (2021). (PMID: 10.1016/j.cell.2021.09.03234678144)
      Bauernfried, S., Scherr, M. J., Pichlmair, A., Duderstadt, K. E. & Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 371, eabd0811 (2021). (PMID: 10.1126/science.abd081133243852)
      Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020). (PMID: 10.1038/s41590-020-0669-6323670367316630)
      Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020). (PMID: 10.1126/science.abb9818328200638744141)
      Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 339–341 (2020). (PMID: 10.1038/s41577-020-0321-6323177167187142)
      Weinreich, D. M. et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 384, 238–251 (2021). (PMID: 10.1056/NEJMoa203500233332778)
      Gupta, A. et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 385, 1941–1950 (2021). (PMID: 10.1056/NEJMoa210793434706189)
      Korley, F. K. et al. Early convalescent plasma for high-risk outpatients with COVID-19. N. Engl. J. Med. 385, 1951–1960 (2021). (PMID: 10.1056/NEJMoa210378434407339)
      Zhou, Y. et al. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 34, 108699 (2021). (PMID: 10.1016/j.celrep.2021.108699334854057802522)
      Chakraborty, S. et al. Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Sci. Transl. Med. 14, eabm7853 (2022). (PMID: 10.1126/scitranslmed.abm785335040666)
      Division of Viral Diseases, NCIRD. 2019-Novel Coronavirus (2019-nCoV) Real-Time rRT-PCR Panel Primer and Probes, https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html (CDC, 2020).
      Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020). (PMID: 10.1016/j.cell.2020.04.011323304147179501)
      Perera, R. et al. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg. Infect. Dis. 26, 2701–2704 (2020). (PMID: 10.3201/eid2611.203219327499577588524)
    • Grant Information:
      United Kingdom BHF_ British Heart Foundation; R01 AI124491 United States AI NIAID NIH HHS; T32 AI007245 United States AI NIAID NIH HHS; U19 AI131135 United States AI NIAID NIH HHS; P30 CA006516 United States CA NCI NIH HHS; P30 AI060354 United States AI NIAID NIH HHS
    • Accession Number:
      0 (AIM2 protein, human)
      0 (DNA-Binding Proteins)
      0 (GSDMD protein, human)
      0 (Inflammasomes)
      0 (NLR Family, Pyrin Domain-Containing 3 Protein)
      0 (NLRP3 protein, human)
      0 (Phosphate-Binding Proteins)
      0 (Pore Forming Cytotoxic Proteins)
      0 (Receptors, IgG)
      EC 3.4.22.36 (Caspase 1)
    • Publication Date:
      Date Created: 20220406 Date Completed: 20220617 Latest Revision: 20240330
    • Publication Date:
      20240330
    • Accession Number:
      PMC10071495
    • Accession Number:
      10.1038/s41586-022-04702-4
    • Accession Number:
      35385861