Subsequent malignant neoplasms in the pediatric age in retinoblastoma survivors in Argentina.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley Country of Publication: United States NLM ID: 101186624 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1545-5017 (Electronic) Linking ISSN: 15455009 NLM ISO Abbreviation: Pediatr Blood Cancer Subsets: MEDLINE
    • Publication Information:
      Original Publication: Hoboken, N.J. : John Wiley, c 2004-
    • Subject Terms:
    • Abstract:
      Background: Retinoblastoma survivors in low- and middle-income countries are exposed to high-intensity treatments that potentially place them at higher risk of early subsequent malignant neoplasms (SMNs).
      Methods: We followed 714 (403 [56.4%] nonhereditary and 311 [43.5%] hereditary) retinoblastoma survivors diagnosed from August 1987 to December 2016, up to the age of 16 years. We quantified risk of SMNs with cumulative incidence (CI) and standardized incidence ratios (SIR) analysis. Multivariate regression Cox model was used to determine the association of treatments and risk of SMNs.
      Results: Median follow-up was of 9 years (range: 0.18-16.9) and 24 survivors (3.36%) developed 25 SMNs (n = 22 hereditary, n = 2 nonhereditary). SMNs included sarcomas (osteosarcomas, Ewing sarcomas, rhabdomyosarcomas; n = 12), leukemias (n = 5), and central nervous system tumors (CNS; n = 3). All cases of acute myeloid leukemia (AML) and most of Ewing sarcomas occurred within 5 years of retinoblastoma diagnosis. The type of SMN was the main indicator of mortality (five of five patients with leukemias, six of 12 with sarcomas, and zero of three with CNS tumors died). Compared to the general population, radiation increased the risk of Ewing sarcoma in hereditary survivors by 700-fold (95% CI = 252-2422.6) and chemotherapy increased the risk of AML by 140-fold (95% CI = 45.3-436). The CI of SMNs for hereditary survivors was 13.7% (95% CI = 8.4-22.1) at 15 years.
      Conclusion: Retinoblastoma survivors from Argentina are at higher risk of developing SMNs early in life compared to the general Argentinean population, especially those treated with radiation plus chemotherapy. AML and Ewing sarcoma presented within 5 years of retinoblastoma diagnosis are associated with chemotherapy and radiation exposure.
      (© 2022 Wiley Periodicals LLC.)
    • References:
      Temming P, Arendt M, Viehmann A, et al. Incidence of second cancers after radiotherapy and systemic chemotherapy in heritable retinoblastoma survivors: a report from the German reference center. Pediatr Blood Cancer. 2017;64(1):71-80. https://doi.org/10.1002/pbc.26193.
      Kleinerman RA, Tucker MA, Tarone RE, et al. Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J Clin Oncol. 2005;23(10):2272-2279. https://doi.org/10.1200/JCO.2005.05.054.
      Kleinerman RA, Tucker MA, Sigel BS, Abramson DH, Seddon JM, Morton LM. Patterns of cause-specific mortality among 2053 survivors of retinoblastoma, 1914-2016. J Natl Cancer Inst. 2019;111(9):961-969. https://doi.org/10.1093/jnci/djy227.
      Kleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF. Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst. 2007;99(1):24-31. https://doi.org/10.1093/jnci/djk002.
      Wong JR, Morton LM, Tucker MA, et al. Risk of subsequent malignant neoplasms in long-term hereditary retinoblastoma survivors after chemotherapy and radiotherapy. J Clin Oncol. 2014;32(29):3284-3290. https://doi.org/10.1200/JCO.2013.54.7844.
      Marees T, Moll AC, Imhof SM, de Boer MR, Ringens PJ, van Leeuwen FE. Risk of second malignancies in survivors of retinoblastoma: more than 40 years of follow-up. J Natl Cancer Inst. 2008;100(24):1771-1779. https://doi.org/10.1093/jnci/djn394.
      Kleinerman RA, Schonfeld SJ, Sigel BS, et al. Bone and soft-tissue sarcoma risk in long-term survivors of hereditary retinoblastoma treated with radiation. J Clin Oncol. 2019;37(35):3436-3445. https://doi.org/10.1200/JCO.19.01096.
      Schonfeld SJ, Kleinerman RA, Abramson DH, Seddon JM, Tucker MA, Morton LM. Long-term risk of subsequent cancer incidence among hereditary and nonhereditary retinoblastoma survivors. Br J Cancer. 2021;124(7):1312-1319. https://doi.org/10.1038/s41416-020-01248-y.
      Fabius AWM, van Hoefen Wijsard M, van Leeuwen FE, Moll AC. Subsequent malignant neoplasms in retinoblastoma survivors. Cancers (Basel). 2021;13(6):1200. https://doi.org/10.3390/cancers13061200.
      Tamboli D, Topham A, Singh N, Singh AD. Retinoblastoma: a SEER dataset evaluation for treatment patterns, survival, and second malignant neoplasms. Am J Ophthalmol. 2015;160(5):953-958. https://doi.org/10.1016/j.ajo.2015.07.037.
      Gregersen PA, Olsen MH, Urbak SF, et al. Incidence and mortality of second primary cancers in Danish patients with retinoblastoma, 1943-2013. JAMA Netw Open. 2020;3(10):e2022126. https://doi.org/10.1001/jamanetworkopen.2020.22126.
      Wong FL, Boice JD, Abramson DH, et al. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA. 1997;278(15):1262-1267. https://doi.org/10.1001/jama.278.15.1262.
      Dimaras H, Corson TW, Cobrinik D, et al. Retinoblastoma. Nat Rev Dis Primers. 2015;1(1):15021. https://doi.org/10.1038/nrdp.2015.21.
      Fabian ID, Abdallah E, Abdullahi SU, et al. Global retinoblastoma presentation and analysis by national income level. JAMA Oncol. 2020;6(5):685-695. https://doi.org/10.1001/jamaoncol.2019.6716.
      One Retinoblastoma World. http://map.1rbw.org/. January 15 2021.
      Moreno F, Sinaki B, Fandiño A, Dussel V, Orellana L, Chantada G. A population-based study of retinoblastoma incidence and survival in Argentine children. Pediatr Blood Cancer. 2014;61(9):1610-1615. https://doi.org/10.1002/pbc.25048.
      Moreno F. Instituto Nacional del Cancer. Registro Oncopediatrico Argentino Tendencia de Incidencia 2000-2016, Superviviencia a 5 Años 2005-2011, Tendencia de Superviviencia Secular: 2000-04, 2005-09, 2010-14.
      Schvartzman E, Chantada G, Fandiño A, de Dávila MT, Raslawski E, Manzitti J. Results of a stage-based protocol for the treatment of retinoblastoma. J Clin Oncol. 1996;14(5):1532-1536. https://doi.org/10.1200/JCO.1996.14.5.1532.
      Chantada G, Fandiño A, Dávila MTG, et al. Results of a prospective study for the treatment of retinoblastoma: treatment of retinoblastoma. Cancer. 2004;100(4):834-842. https://doi.org/10.1002/cncr.11952.
      Pérez V, Sampor C, Rey G, et al. Treatment of nonmetastatic unilateral retinoblastoma in children. JAMA Ophthalmol. 2018;136(7):747. https://doi.org/10.1001/jamaophthalmol.2018.1501.
      Chantada GL, Fandiño AC, Raslawski EC, et al. Experience with chemoreduction and focal therapy for intraocular retinoblastoma in a developing country: chemoreductive therapy in retinoblastoma. Pediatr Blood Cancer. 2005;44(5):455-460. https://doi.org/10.1002/pbc.20259.
      Funes S, Sampor C, Villasante F, et al. Feasibility and results of an intraarterial chemotherapy program for the conservative treatment of retinoblastoma in Argentina. Pediatr Blood Cancer. 2018;65(8):e27086. https://doi.org/10.1002/pbc.27086.
      Dunkel IJ, Krailo MD, Chantada GL, et al. Intensive multi-modality therapy for extra-ocular retinoblastoma (RB): a Children's Oncology Group (COG) trial (ARET0321). J Clin Oncol. 2017;35(15_suppl):10506. https://doi.org/10.1200/JCO.2017.35.15_suppl.10506.
      Sethi RV, Shih HA, Yeap BY, et al. Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy. Cancer. 2014;120(1):126-133. https://doi.org/10.1002/cncr.28387.
      Abramson DH, Frank CM. Second nonocular tumors in survivors of bilateral retinoblastoma: a possible age effect on radiation-related risk. Ophthalmology. 1998;105(4):573-579. https://doi.org/10.1016/S0161-6420(98)94006-4.
      Moll AC, Imhof SM, Schouten-Van Meeteren AY, Kuik DJ, Hofman P, Boers M. Second primary tumors in hereditary retinoblastoma: a register-based study, 1945-1997: is there an age effect on radiation-related risk? Ophthalmology. 2001;108(6):1109-1114. https://doi.org/10.1016/s0161-6420(01)00562-0.
      Temming P, Viehmann A, Arendt M, et al. Pediatric second primary malignancies after retinoblastoma treatment: pediatric second malignancies after retinoblastoma. Pediatr Blood Cancer. 2015;62(10):1799-1804. https://doi.org/10.1002/pbc.25576.
      Yu CL, Tucker MA, Abramson DH, et al. Cause-specific mortality in long-term survivors of retinoblastoma. J Natl Cancer Inst. 2009;101(8):581-591. https://doi.org/10.1093/jnci/djp046.
      Turaka K, Shields CL, Meadows AT, Leahey A. Second malignant neoplasms following chemoreduction with carboplatin, etoposide, and vincristine in 245 patients with intraocular retinoblastoma. Pediatr Blood Cancer. 2012;59(1):121-125. https://doi.org/10.1002/pbc.23278.
      Tahasildar N, Goni V, Bhagwat K, Tripathy SK, Panda BB. Ewing's sarcoma as second malignancy following a short latency in unilateral retinoblastoma. J Orthop Traumatol. 2011;12(3):167-171. https://doi.org/10.1007/s10195-011-0152-0.
      Helton KJ, Fletcher BD, Kun LE, Jenkins JJ, Pratt CB. Bone tumors other than osteosarcoma after retinoblastoma. Cancer. 1993;71(9):2847-2853. https://doi.org/10.1002/1097-0142(19930501)71:9<2847::aid-cncr2820710928>3.0.co;2-e.
      Chaussade A, Millot G, Wells C, et al. Correlation between RB1germline mutations and second primary malignancies in hereditary retinoblastoma patients treated with external beam radiotherapy. Eur J Med Genet. 2019;62(3):217-223. https://doi.org/10.1016/j.ejmg.2018.07.017.
      Gombos DS, Hungerford J, Abramson DH, et al. Secondary acute myelogenous leukemia in patients with retinoblastoma. Ophthalmology. 2007;114(7):1378-1383. https://doi.org/10.1016/j.ophtha.2007.03.074.
      Felice MS, Zubizarreta PA, Chantada GL, et al. Acute myeloid leukemia as a second malignancy: report of 9 pediatric patients in a single institution in Argentina. Med Pediatr Oncol. 1998;30(3):160-164. https://doi.org/10.1002/(sici)1096-911x(199803)30:3%3C160::aid-mpo6%3E3.0.co;2-f.
      Rada R. Sleep and quality of life in head and neck neoplasm. In: Verster JC, Pandi-Perumal SR, Streiner DL, eds. Sleep and Quality of Life in Clinical Medicine. Humana Press; 2008:483-488. https://doi.org/10.1007/978-1-60327-343-5_50.
      Bowers DC, Moskowitz CS, Chou JF, et al. Morbidity and mortality associated with meningioma after cranial radiotherapy: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2017;35(14):1570-1576. https://doi.org/10.1200/JCO.2016.70.1896.
      van Hoefen Wijsard M, Schonfeld SJ, van Leeuwen FE, et al. Benign tumors in long-term survivors of retinoblastoma. Cancers. 2021;13(8):1773. https://doi.org/10.3390/cancers13081773.
      Chantada GL, Fandiño AC, Schvartzman E, Raslawski E, Schaiquevich P, Manzitti J. Impact of chemoreduction for conservative therapy for retinoblastoma in Argentina: chemoreduction for retinoblastoma. Pediatr Blood Cancer. 2014;61(5):821-826. https://doi.org/10.1002/pbc.24857.
    • Contributed Indexing:
      Keywords: cumulative incidence; low- and middle-income countries; pediatric childhood survivors; retinoblastoma; subsequent malignant neoplasm
    • Publication Date:
      Date Created: 20220422 Date Completed: 20220627 Latest Revision: 20220714
    • Publication Date:
      20240104
    • Accession Number:
      10.1002/pbc.29710
    • Accession Number:
      35451226