Gene-environment interaction in type 2 diabetes in Korean cohorts: Interaction of a type 2 diabetes polygenic risk score with triglyceride and cholesterol on fasting glucose levels.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8411723 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-2272 (Electronic) Linking ISSN: 07410395 NLM ISO Abbreviation: Genet Epidemiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: New York, N.Y. : Alan R. Liss, c1984-
    • Subject Terms:
    • Abstract:
      Type 2 diabetes (T2D) is caused by genetic and environmental factors as well as gene-environment interactions. However, these interactions have not been systematically investigated. We analyzed these interactions for T2D and fasting glucose levels in three Korean cohorts, HEXA, KARE, and CAVAS, using the baseline data with a multiple regression model. Two polygenic risk scores for T2D (PRS T2D ) and fasting glucose (PRS FG ) were calculated using 488 and 82 single nucleotide polymorphisms (SNP) for T2D and fasting glucose, respectively, which were extracted from large-scaled genome-wide association studies with multiethnic data. Both lifestyle risk factors and T2D-related biochemical measurements were assessed. The effect of interactions between PRS T2D -triglyceride (TG) and PRS T2D -total cholesterol (TC) on fasting glucose levels was observed as follows: β ± SE = 0.0005 ± 0.0001, p = 1.06 × 10 -19 in HEXA, β ± SE = 0.0008 ± 0.0001, p = 2.08 × 10 -8 in KARE for TG; β ± SE = 0.0006 ± 0.0001, p = 2.00 × 10 -6 in HEXA, β ± SE = 0.0020 ± 0.0004, p = 2.11 × 10 -6 in KARE, β ± SE = 0.0007 ± 0.0004, p = 0.045 in CAVAS for TC. PRS T2D -based classification of the participants into four groups showed that the fasting glucose levels in groups with higher PRS T2D were more adversely affected by both the TG and TC. In conclusion, blood TG and TC levels may affect the fasting glucose level through interaction with T2D genetic factors, suggesting the importance of consideration of gene-environment interaction in the preventive medicine of T2D.
      (© 2022 Wiley Periodicals LLC.)
    • References:
      Ahn, Y., Kwon, E., Shim, J. E., Park, M. K., Joo, Y., Kimm, K., Park, C., & Kim, D. H. (2007). Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. European Journal of Clinical Nutrition, 61(12), 1435-1441. https://doi.org/10.1038/sj.ejcn.1602657.
      Bieger, W. P., Michel, G., Barwich, D., Biehl, K., & Wirth, A. (1984). Diminished insulin receptors on monocytes and erythrocytes in hypertriglyceridemia. Metabolism: Clinical and Experimental, 33(11), 982-987.
      Boden, G., & Shulman, G. I. (2002). Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. European Journal of Clinical Investigation, 32(Suppl 3), 14-23.
      Brito, E. C., Lyssenko, V., Renstrom, F., Berglund, G., Nilsson, P. M., Groop, L., & Franks, P. W. (2009). Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: A study of 16,003 Swedish adults. Diabetes, 58(6), 1411-1418. https://doi.org/10.2337/db08-1623.
      Chan, J. M., Rimm, E. B., Colditz, G. A., Stampfer, M. J., & Willett, W. C. (1994). Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care, 17(9), 961-969.
      Chen, J., Spracklen, C. N., Marenne, G., Varshney, A., Corbin, L. J., Luan, J., Willems, S. M., Wu, Y., Zhang, X., Horikoshi, M., Boutin, T. S., Magi, R., Waage, J., Li-Gao, R., Chan, K. H. K., Yao, J., Anasanti, M. D., Chu, A. Y., Claringbould, A., … Insulin-related Traits Consortium. (2021). The trans-ancestral genomic architecture of glycemic traits. Nat Genet, 53(6), 840-860. https://doi.org/10.1038/s41588-021-00852-9.
      Cho, Y. S., Go, M. J., Kim, Y. J., Heo, J. Y., Oh, J. H., Ban, H. J., Yoon, D., Lee, M. H., Kim, D. J., Park, M., Cha, S. H., Kim, J. W., Han, B. G., Min, H., Ahn, Y., Park, M. S., Han, H. R., Jang, H. Y., Cho, E. Y., … Kim, H. L. (2009). A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nature Genetics, 41(5), 527-534. https://doi.org/10.1038/ng.357.
      Cornelis, M. C., Qi, L., Kraft, P., & Hu, F. B. (2009). TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. American Journal of Clinical Nutrition, 89(4), 1256-1262. https://doi.org/10.3945/ajcn.2008.27058.
      Cui, J., Sun, J., Wang, W., Xin, H., Qiao, Q., Baloch, Z., & Ma, A. (2017). The association of triglycerides and total cholesterol concentrations with newly diagnosed diabetes in adults in China. Oncotarget, 8(61), 103477-103485. https://doi.org/10.18632/oncotarget.21969.
      Cullmann, M., Hilding, A., & Ostenson, C. G. (2012). Alcohol consumption and risk of pre-diabetes and type 2 diabetes development in a Swedish population. Diabetic Medicine, 29(4), 441-452. https://doi.org/10.1111/j.1464-5491.2011.03450.x.
      Fazio, S., & Linton, M. F. (2013). Killing two birds with one stone, maybe: CETP inhibition increases both high-density lipoprotein levels and insulin secretion. Circulation Research, 113(2), 94-96. https://doi.org/10.1161/CIRCRESAHA.113.301832.
      Franks, P. W., Pearson, E., & Florez, J. C. (2013). Gene-environment and gene-treatment interactions in type 2 diabetes: Progress, pitfalls, and prospects. Diabetes Care, 36(5), 1413-1421. https://doi.org/10.2337/dc12-2211.
      Ginsberg, H. N. (2000). Insulin resistance and cardiovascular disease. Journal of Clinical Investigation, 106(4), 453-458. https://doi.org/10.1172/JCI10762.
      Ginsberg, H. N., Zhang, Y. L., & Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36(3), 232-240. https://doi.org/10.1016/j.arcmed.2005.01.005.
      Gylling, H., Hallikainen, M., Pihlajamaki, J., Simonen, P., Kuusisto, J., Laakso, M., & Miettinen, T. A. (2010). Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity: Lessons from the METSIM Study. Journal of Lipid Research, 51(8), 2422-2427. https://doi.org/10.1194/jlr.P006619.
      Haase, C. L., Tybjaerg-Hansen, A., Nordestgaard, B. G., & Frikke-Schmidt, R. (2015). HDL cholesterol and risk of type 2 diabetes: A Mendelian Randomization Study. Diabetes, 64(9), 3328-3333. https://doi.org/10.2337/db14-1603.
      He, M. A., Workalemahu, T., Cornelis, M. C., Hu, F. B., & Qi, L. (2011). Genetic variants near the IRS1 gene, physical activity and type 2 diabetes in US men and women. Diabetologia, 54(6), 1579-1582. https://doi.org/10.1007/s00125-011-2123-7.
      Howie, B. N., Donnelly, P., & Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5(6), e1000529. https://doi.org/10.1371/journal.pgen.1000529.
      Hu, F. B., Li, T. Y., Colditz, G. A., Willett, W. C., & Manson, J. E. (2003). Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. Journal of the American Medical Association, 289(14), 1785-1791. https://doi.org/10.1001/jama.289.14.1785.
      Jung, C. H., Son, J. W., Kang, S., Kim, W. J., Kim, H. S., Seo, M., Shin, H. J., Lee, S. S., Jeong, S. J., Cho, Y., Han, S. J., Jang, H. M., Rho, M., Lee, S., Koo, M., Yoo, B., Moon, J. W., Lee, H. Y., Yun, J. S., … Yoon, K. H. (2021). Diabetes Fact Sheets in Korea, 2020: An appraisal of current status. Diabetes & Metabolism Journal, 45(1), 1-10. https://doi.org/10.4093/dmj.2020.0254.
      Kametani, T., Koshida, H., Nagaoka, T., & Miyakoshi, H. (2002). Hypertriglyceridemia is an independent risk factor for development of impaired fasting glucose and diabetes mellitus: A 9-year longitudinal study in Japanese. Internal Medicine, 41(7), 516-521.
      Kilpelainen, T. O., & Franks, P. W. (2014). Gene-physical activity interactions and their impact on diabetes. Medicine and Sport Science, 60, 94-103. https://doi.org/10.1159/000357339.
      Kim, J., Kim, M. K., Jung, S., Lim, J. E., Shin, M. H., Kim, Y. J., & Oh, B. (2017). Interaction of iron status with single nucleotide polymorphisms on incidence of type 2 diabetes. PLoS ONE, 12(4), e0175681. https://doi.org/10.1371/journal.pone.0175681.
      Kim, J., Kim, Y., Ahn, Y. O., Paik, H. Y., Ahn, Y., Tokudome, Y., Hamajima, N., Inoue, M., & Tajima, K. (2003). Development of a food frequency questionnaire in Koreans. Asia Pacific Journal of Clinical Nutrition. 12(3), 243-250.
      Kim, J., Oh, B., Lim, J. E., & Kim, M. K. (2016). No interaction with alcohol consumption, but independent effect of C12orf51 (HECTD4) on type 2 diabetes mellitus in Korean adults aged 40-69 years: The KoGES_Ansan and Ansung Study. PLoS ONE, 11(2), e0149321. https://doi.org/10.1371/journal.pone.0149321.
      Kim, Y., & Han, B. G. (2017). Cohort profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. International Journal of Epidemiology, 46(2), e20. https://doi.org/10.1093/ije/dyv316.
      Langenberg, C., Sharp, S. J., Franks, P. W., Scott, R. A., Deloukas, P., Forouhi, N. G., Froguel, P., Groop, L. C., Hansen, T., Palla, L., Pedersen, O., Schulze, M. B., Tormo, M. J., Wheeler, E., Agnoli, C., Arriola, L., Barricarte, A., Boeing, H., Clarke, G. M., … Wareham, N. J. (2014). Gene-lifestyle interaction and type 2 diabetes: The EPIC interact case-cohort study. PLoS Medicine, 11(5), e1001647. https://doi.org/10.1371/journal.pmed.1001647.
      Lee, J. K., Kim, K., Ahn, Y., Yang, M., & Lee, J. E. (2015). Habitual coffee intake, genetic polymorphisms, and type 2 diabetes. European Journal of Endocrinology, 172(5), 595-601. https://doi.org/10.1530/EJE-14-0805.
      Lewis, G. F. (1997). Fatty acid regulation of very low density lipoprotein production. Current Opinion in Lipidology, 8(3), 146-153.
      Li, J. H., Szczerbinski, L., Dawed, A. Y., Kaur, V., Todd, J. N., Pearson, E. R., & Florez, J. C. (2021). A polygenic score for type 2 diabetes risk is associated with both the acute and sustained response to sulfonylureas. Diabetes, 70(1), 293-300. https://doi.org/10.2337/db20-0530.
      Lin, S. X., Berlin, I., Younge, R., Jin, Z., Sibley, C. T., Schreiner, P., Szklo, M., & Bertoni, A. G. (2013). Does elevated plasma triglyceride level independently predict impaired fasting glucose?: The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care, 36(2), 342-347. https://doi.org/10.2337/dc12-0355.
      Liu, J. Z., Erlich, Y., & Pickrell, J. K. (2017). Case-control association mapping by proxy using family history of disease. Nature Genetics, 49(3), 325-331. https://doi.org/10.1038/ng.3766.
      Lopez-Portillo, M. L., Huidobro, A., Tobar-Calfucoy, E., Yanez, C., Retamales-Ortega, R., Garrido-Tapia, M., Acevedo, J., Paredes, F., Cid-Ossandon, V., Ferreccio, C., & Verdugo, R. A. (2021). The Association between fasting glucose and sugar sweetened beverages intake is greater in Latin Americans with a high polygenic risk score for type 2 diabetes mellitus. Nutrients, 14(1)​. https://doi.org/10.3390/nu14010069.
      Love-Osborne, K., Butler, N., Gao, D., & Zeitler, P. (2006). Elevated fasting triglycerides predict impaired glucose tolerance in adolescents at risk for type 2 diabetes. Pediatric Diabetes, 7(4), 205-210. https://doi.org/10.1111/j.1399-5448.2006.00179.x.
      Mahajan, A., Go, M. J., Zhang, W., Below, J. E., Gaulton, K. J., Ferreira, T., Horikoshi, M., Johnson, A. D., Ng, M. C., Prokopenko, I., Saleheen, D., Wang, X., Zeggini, E., Abecasis, G. R., Adair, L. S., Almgren, P., Atalay, M., Aung, T., Baldassarre, D., … Morris, A. P. (2014). Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 46(3), 234-244. https://doi.org/10.1038/ng.2897.
      Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N. W., Payne, A. J., Steinthorsdottir, V., Scott, R. A., Grarup, N., Cook, J. P., Schmidt, E. M., Wuttke, M., Sarnowski, C., Magi, R., Nano, J., Gieger, C., Trompet, S., Lecoeur, C., … McCarthy, M. I. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 50(11), 1505-1513. https://doi.org/10.1038/s41588-018-0241-6.
      Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747-753. https://doi.org/10.1038/nature08494.
      Manson, J. E., Ajani, U. A., Liu, S., Nathan, D. M., & Hennekens, C. H. (2000). A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians. American Journal of Medicine, 109(7), 538-542.
      Moon, S., Kim, Y. J., Han, S., Hwang, M. Y., Shin, D. M., Park, M. Y., Lu, Y., Yoon, K., Jang, H. M., Kim, Y. K., Park, T. J., Song, D. S., Park, J. K., Lee, J. E., & Kim, B. J. (2019). The Korea biobank array: Design and identification of coding variants associated with blood biochemical traits. Scientific Reports, 9(1), 1382. https://doi.org/10.1038/s41598-018-37832-9.
      Moore, A. F., Jablonski, K. A., McAteer, J. B., Saxena, R., Pollin, T. I., Franks, P. W., Hanson, R. L., Shuldiner, A. R., Knowler, W. C., Altshuler, D., & Florez, J. C. (2008). Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes, 57(9), 2503-2510. https://doi.org/10.2337/db08-0284.
      Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., deBakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795.
      Qi, L., Cornelis, M. C., Zhang, C., vanDam, R. M., & Hu, F. B. (2009). Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. American Journal of Clinical Nutrition, 89(5), 1453-1458. https://doi.org/10.3945/ajcn.2008.27249.
      R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
      Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1(7285), 785-789.
      Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843.
      Siebel, A. L., Natoli, A. K., Yap, F. Y., Carey, A. L., Reddy-Luthmoodoo, M., Sviridov, D., Weber, C. I., Meneses-Lorente, G., Maugeais, C., Forbes, J. M., & Kingwell, B. A. (2013). Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion. Circulation Research, 113(2), 167-175. https://doi.org/10.1161/CIRCRESAHA.113.300689.
      Sigal, R. J., Kenny, G. P., Wasserman, D. H., Castaneda-Sceppa, C., & White, R. D. (2006). Physical activity/exercise and type 2 diabetes: A consensus statement from the American Diabetes Association. Diabetes Care, 29(6), 1433-1438. https://doi.org/10.2337/dc06-9910.
      Simonen, P. P., Gylling, H. K., & Miettinen, T. A. (2002). Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care, 25(9), 1511-1515.
      Steinthorsdottir, V., Thorleifsson, G., Sulem, P., Helgason, H., Grarup, N., Sigurdsson, A., Helgadottir, H. T., Johannsdottir, H., Magnusson, O. T., Gudjonsson, S. A., Justesen, J. M., Harder, M. N., Jorgensen, M. E., Christensen, C., Brandslund, I., Sandbaek, A., Lauritzen, T., Vestergaard, H., Linneberg, A., … Stefansson, K. (2014). Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nature Genetics, 46(3), 294-298. https://doi.org/10.1038/ng.2882.
      Svedberg, J., Bjorntorp, P., Lonnroth, P., & Smith, U. (1991). Prevention of inhibitory effect of free fatty acids on insulin binding and action in isolated rat hepatocytes by etomoxir. Diabetes, 40(6), 783-786.
      Tam, C. H. T., Lim, C. K. P., Luk, A. O. Y., Ng, A. C. W., Lee, H. M., Jiang, G., Lau, E. S. H., Fan, B., Wan, R., Kong, A. P. S., Tam, W. H., Ozaki, R., Chow, E. Y. K., Lee, K. F., Siu, S. C., Hui, G., Tsang, C. C., Lau, K. P., Leung, J. Y. Y., … Hong Kong Diabetes Biobank Study, G. (2021). Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians. Genome Medicine, 13(1), 29. https://doi.org/10.1186/s13073-021-00831-z.
      The Korean Nutrition Society. (2000). Recommended dietary allowances for Koreans (7th ed.).
      Tirosh, A., Shai, I., Bitzur, R., Kochba, I., Tekes-Manova, D., Israeli, E., Shochat, T., & Rudich, A. (2008). Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care, 31(10), 2032-2037. https://doi.org/10.2337/dc08-0825.
      Tyrrell, J., Wood, A. R., Ames, R. M., Yaghootkar, H., Beaumont, R. N., Jones, S. E., Tuke, M. A., Ruth, K. S., Freathy, R. M., Davey Smith, G., Joost, S., Guessous, I., Murray, A., Strachan, D. P., Kutalik, Z., Weedon, M. N., & Frayling, T. M. (2017). Gene-obesogenic environment interactions in the UK Biobank study. International Journal of Epidemiology, 46(2), 559-575. https://doi.org/10.1093/ije/dyw337.
      Udler, M. S., McCarthy, M. I., Florez, J. C., & Mahajan, A. (2019). Genetic risk scores for diabetes diagnosis and precision medicine. Endocrine Reviews, 40(6), 1500-1520. https://doi.org/10.1210/er.2019-00088.
      Villegas, R., Delahanty, R., Gao, Y. T., Long, J., Williams, S. M., Xiang, Y. B., Cai, H., Li, H. L., Hu, F., Cai, Q., Zheng, W., & Shu, X. O. (2012). Joint effect of genetic and lifestyle risk factors on type 2 diabetes risk among Chinese men and women. PLoS ONE, 7(11), e49464. https://doi.org/10.1371/journal.pone.0049464.
      Villegas, R., Williams, S., Gao, Y., Cai, Q., Li, H., Elasy, T., Cai, H., Edwards, T., Xiang, Y. B., Zheng, W., Long, J., & Ou Shu, X. (2011). Peroxisome proliferator-activated receptor delta (PPARD) genetic variation and type 2 diabetes in middle-aged Chinese women. Annals of Human Genetics, 75(5), 621-629. https://doi.org/10.1111/j.1469-1809.2011.00669.x.
      Villegas, R., Williams, S. M., Gao, Y. T., Long, J., Shi, J., Cai, H., Li, H., Chen, C. C., Tai, E. S., Hu, F., Cai, Q., Zheng, W., & Shu, X. O. (2014). Genetic variation in the peroxisome proliferator-activated receptor (PPAR) and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) gene families and type 2 diabetes. Annals of Human Genetics, 78(1), 23-32. https://doi.org/10.1111/ahg.12044.
      Vujkovic, M., Keaton, J. M., Lynch, J. A., Miller, D. R., Zhou, J., Tcheandjieu, C., Huffman, J. E., Assimes, T. L., Lorenz, K., Zhu, X., Hilliard, A. T., Judy, R. L., Huang, J., Lee, K. M., Klarin, D., Pyarajan, S., Danesh, J., Melander, O., Rasheed, A., … Saleheen, D. (2020). Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 52(7), 680-691. https://doi.org/10.1038/s41588-020-0637-y.
      Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics, 26(17), 2190-2191. https://doi.org/10.1093/bioinformatics/btq340.
      Wu, Y., Ding, Y., Tanaka, Y., & Zhang, W. (2014). Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. International Journal of Medical Sciences, 11(11), 1185-1200. https://doi.org/10.7150/ijms.10001.
      Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76-82. https://doi.org/10.1016/j.ajhg.2010.11.011.
      Ye, Y., Chen, X., Han, J., Jiang, W., Natarajan, P., & Zhao, H. (2021). Interactions between enhanced polygenic risk scores and lifestyle for cardiovascular disease, diabetes, and lipid levels. Circ Genom Precis Med, 14(1), e003128. https://doi.org/10.1161/CIRCGEN.120.003128.
      Zhao, J., Zhang, Y., Wei, F., Song, J., Cao, Z., Chen, C., Zhang, K., Feng, S., Wang, Y., & Li, W. D. (2019). Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. Journal of Translational Medicine, 17(1), 403. https://doi.org/10.1186/s12967-019-02156-3.
      Zimmet, P., Alberti, K. G., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782-787. https://doi.org/10.1038/414782a.
    • Contributed Indexing:
      Keywords: fasting glucose level; gene-environment interactions; genome-wide association study; polygenic risk score; type 2 diabetes
    • Accession Number:
      0 (Blood Glucose)
      0 (Triglycerides)
      97C5T2UQ7J (Cholesterol)
      IY9XDZ35W2 (Glucose)
    • Publication Date:
      Date Created: 20220428 Date Completed: 20220804 Latest Revision: 20220922
    • Publication Date:
      20240104
    • Accession Number:
      10.1002/gepi.22454
    • Accession Number:
      35481584