Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8903333 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-2795 (Electronic) Linking ISSN: 1040452X NLM ISO Abbreviation: Mol Reprod Dev Subsets: MEDLINE
    • Publication Information:
      Publication: <2005-> : Hoboken, N.J. : Wiley-Liss
      Original Publication: New York, NY : A.R. Liss, 1988-
    • Subject Terms:
    • Abstract:
      Intrauterine growth restriction (IUGR) is frequently observed in pig production, especially when using highly prolific sows. IUGR piglets are born with low body weight and shape indicative of differences in organ growth. Insufficient uteroplacental nutrient transfer to the fetuses is the leading cause of growth restriction in the pig. Supplementing the sow's gestation diet with arginine and/or glutamine improves placenta growth and functionality and consequently is able to reduce IUGR incidence. IUGR piglets are at higher risk of dying preweaning and face higher morbidity than their normal-weight littermates. A high level of surveillance during farrowing and individual nutrient supplementation can reduce the mortality rates. Still, these do not reverse the long-term consequences of IUGR, which are induced by persistent structural deficits in different organs. Dietary interventions peri-weaning can optimize performance but these are less effective in combating the metabolic changes that occurred in IUGR, which affect reproductive performance later in life. IUGR piglets share many similarities with IUGR infants, such as a poorer outcome of males. Using the IUGR piglet as an animal model to further explore the structural and molecular basis of the long-term consequences of IUGR and the potential sex bias could aid in fully understanding the impact of prenatal undernutrition and finding solutions for both species and sexes.
      (© 2022 The Authors. Molecular Reproduction and Development published by Wiley Periodicals LLC.)
    • References:
      Amdi, C., Jensen, L. L., Oksbjerg, N., & Hansen, C. F. (2017). Supplementing newborn intrauterine growth restricted piglets with a bolus of porcine colostrum raises rectal temperatures one degree celsius. Journal of Animal Science, 95(7), 2968-2976. https://doi.org/10.2527/jas.2017.1482.
      Amdi, C., Lynegaard, J. C., Thymann, T., & Williams, A. R. (2020). Intrauterine growth restriction in piglets alters blood cell counts and impairs cytokine responses in peripheral mononuclear cells 24 days post-partum. Scientific Reports, 10(1), 4683. https://doi.org/10.1038/s41598-020-61623-w.
      Ayuso, M., Irwin, R., Walsh, C., Van Cruchten, S., & Van Ginneken, C. (2021). Low birth weight female piglets show altered intestinal development, gene expression, and epigenetic changes at key developmental loci. FASEB Journal, 35(4), e21522. https://doi.org/10.1096/fj.202002587R.
      Ayuso, M., Van Cruchten, S., & Van Ginneken, C. (2020). Birthweight determines intestinal microvasculature development and alters endothelial nitric oxide synthase density in young piglets. Anatomia, Histologia, Embryologia, 49(5), 627-634. https://doi.org/10.1111/ahe.12534.
      Bai, K., Jiang, L., Li, Q., Zhang, J., Zhang, L., & Wang, T. (2021). Dietary dimethylglycine sodium salt supplementation improves growth performance, redox status, and skeletal muscle function of intrauterine growth-restricted weaned piglets. Journal of Animal Science, 99(7), skab186. https://doi.org/10.1093/jas/skab186.
      Baik-Schneditz, N., Pichler, G., Schwaberger, B., Binder-Heschl, C., Mileder, L., Reiss, I. K. H., Avian, A., Greimel, P., Klaritsch, P., & Urlesberger, B. (2020). Effect of intrauterine growth restriction on cerebral regional oxygen saturation in preterm and term neonates during immediate postnatal transition. Neonatology, 117(3), 324-330. https://doi.org/10.1159/000507583.
      Bauer, R., Walter, B., Vollandt, R., & Zwiener, U. (2004). Intrauterine growth restriction ameliorates the effects of gradual hemorrhagic hypotension on regional cerebral blood flow and brain oxygen uptake in newborn piglets. Pediatric Research, 56(4), 639-646. https://doi.org/10.1203/01.Pdr.0000139425.94975.77.
      Baxter, E. M., Jarvis, S., D'Eath, R. B., Ross, D. W., Robson, S. K., Farish, M., Nevison, I. M., Lawrence, A. B., & Edwards, S. A. (2008). Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology, 69(6), 773-783. https://doi.org/10.1016/j.theriogenology.2007.12.007.
      Baxter, E. M., Jarvis, S., Palarea-Albaladejo, J., & Edwards, S. A. (2012). The weaker sex? The propsensity for male-biased piglet mortality. PLoS One, 7(1), e30318. https://doi.org/10.1371/journal.pone.0030318.
      Boehm, G., Bierbach, U., Senger, H., Jakobsson, I., Minoli, I., Moro, G., & Räihä, N. C. (1991). Activities of lipase and trypsin in duodenal juice of infants small for gestational age. Journal of Pediatrics Gastroenterology and Nutrition, 12(3), 324-327. https://doi.org/10.1097/00005176-199104000-00006.
      Botting, K. J., Loke, X. Y., Zhang, S., Andersen, J. B., Nyengaard, J. R., & Morrison, J. L. (2018). IUGR decreases cardiomyocyte endowment and alters cardiac metabolism in a sex- and cause-of-IUGR-specific manner. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 315(1), R48-R67. https://doi.org/10.1152/ajpregu.00180.2017.
      Bozzetti, V., Paterlini, G., Gazzolo, D., Van Bel, F., Visser, G. H., Roncaglia, N., & Tagliabue, P. E. (2013). Monitoring Doppler patterns and clinical parameters may predict feeding tolerance in intrauterine growth-restricted infants. Acta Paediatrica, 102(11), e519-e523. https://doi.org/10.1111/apa.12380.
      Briana, D. D., Papathanasiou, A. E., Gavrili, S., Georgantzi, S., Marmarinos, A., Christou, C., Voulgaris, K., Gourgiotis, D., & Malamitsi-Puchner, A. (2019). Preadipocyte factor-1 in maternal, umbilical cord serum and breast milk: The impact of fetal growth. Cytokine, 114, 143-148. https://doi.org/10.1016/j.cyto.2018.11.010.
      Che, L., Yang, Z., Xu, M., Xu, S., Che, L., Lin, Y., Fang, Z., Feng, B., Li, J., Chen, D., & Wu, D. (2017). Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genomics, 18(1), 213. https://doi.org/10.1186/s12864-017-3601-1.
      Cheng, K., Yu, C., Li, Z., Li, S., Yan, E., Song, Z., Zhang, H., Zhang, L., & Wang, T. (2020). Resveratrol improves meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs. Meat Science, 170, 108237. https://doi.org/10.1016/j.meatsci.2020.108237.
      Cogollos, L., Garcia-Contreras, C., Vazquez-Gomez, M., Astiz, S., Sanchez-Sanchez, R., Gomez-Fidalgo, E., Ovilo, C., Isabel, B., & Gonzalez-Bulnes, A. (2017). Effects of fetal genotype and sex on developmental response to maternal malnutrition. Reproduction, Fertility, and Development, 29(6), 1155-1168. https://doi.org/10.1071/rd15385.
      Cohen, E., Baerts, W., Alderliesten, T., Derks, J., Lemmers, P., & van Bel, F. (2016). Growth restriction and gender influence cerebral oxygenation in preterm neonates. Archives of Disease in Childhood. Fetal and Neonatal Edition, 101(2), F156-F161. https://doi.org/10.1136/archdischild-2015-308843.
      Cohen, E., Baerts, W., & van Bel, F. (2015). Brain-sparing in intrauterine growth restriction: Considerations for the neonatologist. Neonatology, 108, 269-276. https://doi.org/10.1159/000438451.
      Corson, A. M., Laws, J., Litten, J. C., Lean, I. J., & Clarke, L. (2009). Intergenerational effects of birth weight on glucose tolerance and reproductive performance. Animal, 3(4), 579-591. https://doi.org/10.1017/s1751731108003510.
      Cromwell, G. L., Hall, D. D., Clawson, A. J., Combs, G. E., Knabe, D. A., Maxwell, C. V., Noland, P. R., Orr, D. E., Jr., & Prince, T. J. (1989). Effects of additional feed during late gestation on reproductive performance of sows: A cooperative study. Journal of Animal Science, 67(1), 3-14. https://doi.org/10.2527/jas1989.6713.
      De Vos, M., Huygelen, V., Willemen, S., Fransen, E., Casteleyn, C., Van Cruchten, S., Michiels, J., & Van Ginneken, C. (2014). Artificial rearing of piglets: Effects on small intestinal morphology and digestion capacity. Livestock Science, 159, 165-173. https://doi.org/10.1016/j.livsci.2013.11.012.
      Declerck, I., Dewulf, J., Decaluwé, R., & Maes, D. (2016). Effects of energy supplementation to neonatal (very) low birth weight piglets on mortality, weaning weight, daily weight gain and colostrum intake. Livestock Science, 183, 48-53. https://doi.org/10.1016/j.livsci.2015.11.015.
      Devillers, N., Farmer, C., Le Dividich, J., & Prunier, A. (2007). Variability of colostrum yield and colostrum intake in pigs. Animal, 1(7), 1033-1041. https://doi.org/10.1017/S175173110700016X.
      Douglas, S. L., Edwards, S. A., & Kyriazakis, I. (2016). Are all piglets born lightweight alike? Morphological measurements as predictors of postnatal performance. Journal of Animal Science, 94(8), 3510-3518. https://doi.org/10.2527/jas.2015-0142.
      Edwards, S. A. (2002). Perinatal mortality in the pig: Environmental or physiological solutions? Livestock Production Science, 78(1), 3-12. https://doi.org/10.1016/S0301-6226(02)00180-X.
      Engelsmann, M. N., Hansen, C. F., Nielsen, M. N., Kristensen, A. R., & Amdi, C. (2019). Glucose injections at birth, warmth and placing at a nurse sow improve the growth of IUGR piglets. Animals, 9(8), 519. https://doi.org/10.3390/ani9080519.
      Feldpausch, J. A., Jourquin, J., Bergstrom, J. R., Bargen, J. L., Bokenkroger, C. D., Davis, D. L., Gonzalez, J. M., Nelssen, J. L., Puls, C. L., Trout, W. E., & Ritter, M. J. (2019). Birth weight threshold for identifying piglets at risk for preweaning mortality. Translational Animal Science, 3(2), 633-640. https://doi.org/10.1093/tas/txz076.
      Fowden, A. L., Ward, J. W., Wooding, F. P., Forhead, A. J., & Constancia, M. (2006). Programming placental nutrient transport capacity. Journal of Physiology, 572(Pt 1), 5-15. https://doi.org/10.1113/jphysiol.2005.104141.
      Gondret, F., Lefaucheur, L., Louveau, I., Lebret, B., Pichodo, X., & Le Cozler, Y. (2005). Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livestock Production Science, 93, 137-146. https://doi.org/10.1016/j.livprodsci.2004.09.009.
      Gonzalez-Bulnes, A., Torres-Rovira, L., Astiz, S., Ovilo, C., Sanchez-Sanchez, R., Gomez-Fidalgo, E., Perez-Solana, M., Martin-Lluch, M., Garcia-Contreras, C., & Vazquez-Gomez, M. (2015). Fetal sex modulates developmental response to maternal malnutrition. PLoS One, 10(11), e0142158. https://doi.org/10.1371/journal.pone.0142158.
      Gortner, L., Shen, J., & Tutdibi, E. (2013). Sexual dimorphism of neonatal lung development. Klinische Padiatrie, 225(2), 64-69. https://doi.org/10.1055/s-0033-1333758.
      Gupta, M. (2008). Chapter 3D - Intrauterine growth restriction. In D. Brodsky & M. A. Ouellette (Eds.), Primary care of the premature infant (pp. 77-83). W.B. Saunders. https://doi.org/10.1016/B978-1-4160-0039-6.50012-4.
      Hales, J., Moustsen, V. A., Nielsen, M. B., & Hansen, C. F. (2013). Individual physical characteristics of neonatal piglets affect preweaning survival of piglets born in a noncrated system. Journal of Animal Science, 91(10), 4991-5003. https://doi.org/10.2527/jas.2012-5740.
      Harrington, T. A., Thomas, E. L., Frost, G., Modi, N., & Bell, J. D. (2004). Distribution of adipose tissue in the newborn. Pediatric Research, 55(3), 437-441. https://doi.org/10.1203/01.Pdr.0000111202.29433.2d.
      Haschke, F., Binder, C., Huber-Dangl, M., & Haiden, N. (2019). Early-life nutrition, growth trajectories, and long-term outcome. Nestle Nutrition Institute Workshop Series, 90, 107-120. https://doi.org/10.1159/000490299.
      Hu, C., Yang, Y., Deng, M., Yang, L., Shu, G., Jiang, Q., Zhang, S., Li, X., Yin, Y., Tan, C., & Wu, G. (2020). Placentae for low birth weight piglets are vulnerable to oxidative stress, mitochondrial dysfunction, and impaired angiogenesis. Oxidative Medicine and Cellular Longevity, 2020, 8715412. https://doi.org/10.1155/2020/8715412.
      Huting, A. M. S., Almond, K., Wellock, I., & Kyriazakis, I. (2017). What is good for small piglets might not be good for big piglets: The consequences of cross-fostering and creep feed provision on performance to slaughter. Journal of Animal Science, 95(11), 4926-4944. https://doi.org/10.2527/jas2017.1889.
      Huting, A. M. S., Sakkas, P., Wellock, I., Almond, K., & Kyriazakis, I. (2018). Once small always small? To what extent morphometric characteristics and post-weaning starter regime affect pig lifetime growth performance. Porcine Health Management, 4, 21. https://doi.org/10.1186/s40813-018-0098-1.
      Jang, Y. D., Ma, Y. L., & Lindemann, M. D. (2014). Oct Intrauterine position affects fetal weight and crown-rump length throughout gestation. Journal of Animal Science, 92(10), 4400-4406. https://doi.org/10.2527/jas.2014-7762.
      Kirkden, R. D., Broom, D. M., & Andersen, I. L. (2013). Invited review: Piglet mortality: Management solutions. Journal of Animal Science, 91(7), 3361-3389. https://doi.org/10.2527/jas.2012-5637.
      Kobek-Kjeldager, C., Moustsen, V. A., Theil, P. K., & Pedersen, L. J. (2020). Effect of litter size, milk replacer and housing on production results of hyper-prolific sows. Animal, 14(4), 824-833. https://doi.org/10.1017/s175173111900260x.
      König, N. L., Wähner, M., Seeger, J., Sigmarsson, H. L., & Kauffold, J. (2021). An investigation into uterine capacity based on litter and placental characteristics in two sow lines with different prolificacy (Danish Landrace x Danish Yorkshire versus German Saddleback). Reproduction in Domestic Animals, 56(1), 34-45. https://doi.org/10.1111/rda.13847.
      Laws, J., Litten, J. C., Laws, A., Lean, I. J., Dodds, P. F., & Clarke, L. (2009). Jan Effect of type and timing of oil supplements to sows during pregnancy on the growth performance and endocrine profile of low and normal birth weight offspring. British Journal of Nutrition, 101(2), 240-249. https://doi.org/10.1017/s0007114508998469.
      Lents, C. A., & Freking, B. A. (2019). Intrauterine position and adjacent fetal sex affects fetal and placental growth throughout gestation, but not embryonic viability, in pigs selected for component traits of litter size. Animal Reproduction Science, 209, 106139. https://doi.org/10.1016/j.anireprosci.2019.106139.
      Liu, Z. H., Zhang, X. M., Zhou, Y. F., Wang, C., Xiong, J., Guo, L. L., Wang, L., Jiang, S. W., & Peng, J. (2020). Effect of increasing feed intake during late gestation on piglet performance at parturition in commercial production enterprises. Animal Reproduction Science, 218, 106477. https://doi.org/10.1016/j.anireprosci.2020.106477.
      Lynegaard, J. C., Hansen, C. F., Kristensen, A. R., & Amdi, C. (2020). Body composition and organ development of intra-uterine growth restricted pigs at weaning. Animal, 14(2), 322-329. https://doi.org/10.1017/s175173111900171x.
      Manzke, N. E., Gomes, B. K., Xavier, E. G., & de Lima, G. (2018). Efficacy of energy supplementation on growth performance and immune response of suckling pigs. Journal of Animal Science, 96(11), 4723-4730. https://doi.org/10.1093/jas/sky335.
      Maruyama, K., & Koizumi, T. (2001). Superior mesenteric artery blood flow velocity in small for gestational age infants of very low birth weight during the early neonatal period. Journal of Perinatal Medicine, 29(1), 64-70. https://doi.org/10.1515/jpm.2001.009.
      Matheson, S. M., Walling, G. A., & Edwards, S. A. (2018). Genetic selection against intrauterine growth retardation in piglets: A problem at the piglet level with a solution at the sow level. Genetics, Selection, Evolution, 50(1), 46. https://doi.org/10.1186/s12711-018-0417-7.
      McPherson, R. L., Ji, F., Wu, G., Blanton, J. R., Jr., & Kim, S. W. (2004). Growth and compositional changes of fetal tissues in pigs. Journal of Animal Science, 82(9), 2534-2540. https://doi.org/10.2527/2004.8292534x.
      Meng, Q., Guo, T., Li, G., Sun, S., He, S., Cheng, B., Shi, B., & Shan, A. (2018). Dietary resveratrol improves antioxidant status of sows and piglets and regulates antioxidant gene expression in placenta by Keap1-Nrf2 pathway and Sirt1. Journal of Animal Science and Biotechnology, 9(1), 1-13. https://doi.org/10.1186/s40104-018-0248-y.
      Metges, C. C., Lang, I. S., Henning, U., Brüssow, K. P., Kanitz, E., Tuchscherer, M., Scheider, F., Weitzel, J. M., Steinhoff-Ooster, A., Sauerwein, H., Bellmann, O., Nürnberg, G., Rehfeldt, C., & Otten, W. (2012). Intrauterine growth retarded progeny of pregnant sows fed high protein/low carbohydrate diet is related to metabolic energy deficit. PLoS One, 7(2), 31390. https://doi.org/10.1371/journal.pone.0031390.
      Michiels, J., De Vos, M., Missotten, J., Ovyn, A., De Smet, S., & Van Ginneken, C. (2013). Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets. British Journal of Nutrition, 109(1), 65-75. https://doi.org/10.1017/S0007114512000670.
      Miller, H. M., Foxcroft, G. R., & Aherne, F. X. (2000). Increasing food intake in late gestation improved sow condition throughout lactation but did not affect piglet viability or growth rate. Animal Science, 71(1), 141-148. https://doi.org/10.1017/S1357729800054965.
      Moreira, R. H. R., Pérez Palencia, J. Y., Moita, V. H. C., Caputo, L. S. S., Saraiva, A., Andretta, I., Ferreira, R. A., & de Abreu, M. L. T. (2020). Variability of piglet birth weights: A systematic review and meta-analysis. Journal of Animal Physiology and Animal Nutrition, 104(2), 657-666. https://doi.org/10.1111/jpn.13264.
      Muns, R., Nuntapaitoon, M., & Tummaruk, P. (2016). Non-infectious causes of pre-weaning mortality in piglets. Livestock Science, 184, 46-57. https://doi.org/10.1016/j.livsci.2015.11.025.
      Muns, R., Nuntapaitoon, M., & Tummaruk, P. (2017). Effect of oral supplementation with different energy boosters in newborn piglets on pre-weaning mortality, growth and serological levels of IGF-1 and IgG. Journal of Animal Science, 95, 353-360. https://doi.org/10.2527/jas.2016.0958.
      Peltoniemi, O., Oliviero, C., Yun, J., Grahofer, A., & Björkman, S. (2020). Management practices to optimize the parturition process in the hyperprolific sow. Journal of Animal Science, 98(Suppl 1), S96-S106. https://doi.org/10.1093/jas/skaa140.
      Père, M. C., & Etienne, M. (2018). Nutrient uptake of the uterus during the last third of pregnancy in sows: Effects of litter size, gestation stage and maternal glycemia. Animal Reproduction Science, 188, 101-113. https://doi.org/10.1016/j.anireprosci.2017.11.014.
      Phillips, D. I. (1995). Relation of fetal growth to adult muscle mass and glucose tolerance. Diabetic Medicine, 12(8), 686-690. https://doi.org/10.1111/j.1464-5491.1995.tb00570.x.
      Poore, K. R., & Fowden, A. L. (2004a). The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentration in juvenile and adult pigs. Journal of Physiology, 558(1), 295-304. https://doi.org/10.1113/jphysiol.2004.061390.
      Poore, K. R., & Fowden, A. L. (2004b). Insulin sensitivity in juvenile and adult large white pigs of low and high birthweight. Diabetologia, 47(2), 340-348. https://doi.org/10.1007/s00125-003-1305-3.
      Quiniou, N., Dagorn, J., & Gaudré, D. (2002). Variation of piglets’ birth weight and consequences on subsequent performance. Livestock Production Science, 78(1), 63-70. https://doi.org/10.1016/S0301-6226(02)00181-1.
      Rehfeldt, C., & Kuhn, G. (2006). Consequences of birth weight for postnatal performance and carcass quality in pigs as related to myogenesis. Journal of Animal Science, 84, 113-123. https://doi.org/10.2527/2006.8413_supple113x.
      Rehfeldt, C., Lang, I. S., Görs, S., Hennig, U., Kalbe, C., Stabenow, B., Brüssow, K. P., Pfuhl, R., Bellmann, O., Nürnberg, G., Otten, W., & Metges, C. C. (2011). Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth. Journal of Animal Science, 89(2), 329-341. https://doi.org/10.2527/jas.2010-2970.
      Ren, P., Yang, X. J., Railton, R., Jendza, J., Anil, L., & Baidoo, S. K. (2018). Effects of different levels of feed intake during four short periods of gestation and housing systems on sows and litter performance. Animal Reproduction Science, 188, 21-34. https://doi.org/10.1016/j.anireprosci.2017.11.001.
      Reynolds, L. P., Ford, S. P., & Ferrell, C. L. (1985). Blood flow and steroid and nutrient uptake of the gravid uterus and fetus of sows. Journal of Animal Science, 61, 968-974. https://doi.org/10.2527/jas1985.614968x.
      Riddersholm, K. V., Bahnsen, I., Bruun, T. S., de Knegt, L. V., & Amdi, C. (2021). Identifying risk factors for low piglet birth weight, high within-litter variation and occurrence of intrauterine growth-restricted piglets in hyperprolific sows. Animals, 11(9), 2731. https://doi.org/10.3390/ani11092731.
      Roehe, R., & Kalm, E. (2000). Estimation of genetic and environmental risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models. Animal Science, 70, 227-240. https://doi.org/10.1017/S1357729800054692.
      Roelofs, S., van Bommel, I., Melis, S., van der Staay, F. J., & Nordquist, R. E. (2018). Low birth weight impairs acquisition of spatial memory task in pigs. Frontiers in Veterinary Science, 5, 142. https://doi.org/10.3389/fvets.2018.00142.
      Schmitt, O., Baxter, E. M., Lawlor, P. G., Boyle, L. A., & O'Driscoll, K. (2019). A single dose of fat-based energy supplement to light birth weight pigs shortly after birth does not increase their survival and growth. Animals, 9(5), 227. https://doi.org/10.3390/ani9050227.
      Schoknecht, P. A., Newton, G. R., Weise, D. E., & Pond, W. G. (1994). Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine. Theriogenology, 42(2), 217-226. https://doi.org/10.1016/0093-691X(94)90265-8.
      Shanklin, D. R., & Cooke, R. J. (1993). Effects of intra-uterine growth on intestinal length in the human fetus. Biology of the Neonate, 64, 76-81. https://doi.org/10.1159/000243974.
      Sharma, D., Shastri, S., & Sharma, P. (2016). Intrauterine growth restriction: Antenatal and postnatal aspects. Clinical Medicine Insights: Pediatrics, 10, 67-83. https://doi.org/10.4137/CMPed.S40070.
      Sibbons, P. D., Spitz, L., & van Velzen, D. (1992). Collateral blood flow in the distal ileum of neonatal piglets: A clue to the pathogenesis of necrotizing enterocolitis. Pediatric Pathology, 12(1), 15-27. https://doi.org/10.3109/15513819209023278.
      Smit, M. N., Spencer, J. D., Almeida, F. R., Patterson, J. L., Chiarini-Garcia, H., Dyck, M. K., & Foxcroft, G. R. (2013). Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig. Animal, 7(10), 1681-1689. https://doi.org/10.1017/s1751731113001249.
      Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2019). Associations between fetal size, sex and placental angiogenesis in the pig. Biology of Reproduction, 100(1), 239-252. https://doi.org/10.1093/biolre/ioy184.
      Tao, S., Zhou, T., Saelao, P., Wang, Y., Zhu, Y., Li, T., Zhou, H., & Wang, J. (2019). Intrauterine growth restriction alters the genome-wide DNA methylation profiles in small intestine, liver and longissimus dorsi muscle of newborn piglets. Current Protein & Peptide Science, 20(7), 713-726. https://doi.org/10.2174/1389203720666190124165243.
      Tuchscherer, M., Puppe, B., Tuchscherer, A., & Tiemann, U. (2000). Early identification of neonates at risk: Traits of newborn piglets with respect to survival. Theriogenology, 54, 371-388. https://doi.org/10.1016/S0093-691X(00)00355-1.
      Tung, E., Roberts, C. T., Heinemann, G. K., De Blasio, M. J., Kind, K. L., van Wettere, W. H., Owen, J. A., & Gatford, K. L. (2012). Increased placental nutrient transporter expression at midgestation after maternal growth hormone treatment in pigs: A placental mechanism for increased fetal growth. Biology of Reproduction, 87(5), 126. https://doi.org/10.1095/biolreprod.112.100222.
      Valent, D., Yeste, N., Hernández-Castellano, L. E., Arroyo, L., Wu, W., García-Contreras, C., Vázquez-Gómez, M., González-Bulnes, A., Bendixen, E., & Bassols, A. (2019). SWATH-MS quantitative proteomic investigation of intrauterine growth restriction in a porcine model reveals sex differences in hippocampus development. Journal of Proteomics, 204, 103391. https://doi.org/10.1016/j.jprot.2019.103391.
      Vallet, J. L., & Freking, B. A. (2007). Differences in placental structure during gestation associated with large and small pig fetuses. Journal of Animal Science, 85(12), 3267-3275. https://doi.org/10.2527/jas.2007-0368.
      Vallet, J. L., Freking, B. A., & Miles, J. R. (2011). Effect of empty uterine space on birth intervals and fetal and placental development in pigs. Animal Reproduction Science, 125(1−4), 158-164. https://doi.org/10.1016/j.anireprosci.2011.03.006.
      Van Tichelen, K., Prims, S., Ayuso, M., Van Kerschaver, C., Vandaele, M., Degroote, J., Van Cruchten, S., Michiels, J., & Van Ginneken, C. (2021). Handling associated with drenching does not impact survival and general health of low birth weight piglets. Animals, 11(2), 404. https://www.mdpi.com/2076-2615/11/2/404.
      Van Tichelen, K., Prims, S., Ayuso, M., Van Kerschaver, C., Vandaele, M., Degroote, J., Van Cruchten, S., Michiels, J., & Van Ginneken, C. (2022). Drenching bovine colostrum, quercetin or fructo-oligosaccharides has no effect on health or survival of low birth weight piglets. Animals, 12(1), 55. https://www.mdpi.com/2076-2615/12/1/55.
      Vandaele, M., Van Kerschaver, C., Degroote, J., Van Ginneken, C., & Michiels, J. (2020). Piglet performance and colostrum intake in litters either or not split-suckled during the first day or during the first three days of life. Livestock Science, 241, 104265. https://doi.org/10.1016/j.livsci.2020.104265.
      Vande Pol, K. D., Bautista, R. O., Harper, H., Shull, C. M., Brown, C. B., & Ellis, M. (2021). Effect of rearing cross-fostered piglets in litters of either uniform or mixed birth weights on preweaning growth and mortality. Translational Animal Science, 5(1), 030. https://doi.org/10.1093/tas/txab030.
      Vanden Hole, C., Aerts, P., Prims, S., Ayuso, M., Van Cruchten, S., & Van Ginneken, C. (2018). Does intrauterine crowding affect locomotor development? A comparative study of motor performance, neuromotor maturation and gait variability among piglets that differ in birth weight and vitality. PLoS One, 13(4), e0195961. https://doi.org/10.1371/journal.pone.0195961.
      Vanden Hole, C., Ayuso, M., Aerts, P., Prims, S., Van Cruchten, S., & Van Ginneken, C. (2019). Glucose and glycogen levels in piglets that differ in birth weight and vitality. Heliyon, 5(9), e02510. https://doi.org/10.1016/j.heliyon.2019.e02510.
      Vanden Hole, C., Cleuren, S., Van Ginneken, C., Prims, S., Ayuso, M., Van Cruchten, S., & Aerts, P. (2018). How does intrauterine crowding affect locomotor performance in newborn pigs? A study of force generating capacity and muscle composition of the hind limb. PLoS One, 13(12), e0209233. https://doi.org/10.1371/journal.pone.0209233.
      Vanden Hole, C., Van Ginneken, C., Prims, S., Ayuso, M., Van Cruchten, S., & Aerts, P. (2019). Does intrauterine crowding affect the force generating capacity and muscle composition of the piglet front limb? PLoS One, 14(10), e0223851. https://doi.org/10.1371/journal.pone.0223851.
      Vázquez-Gómez, M., Valent, D., García-Contreras, C., Arroyo, L., Óvilo, C., Isabel, B., Bassols, A., & González-Bulnes, A. (2016). Sex and intrauterine growth restriction modify brain neurotransmitters profile of newborn piglets. International Journal of Developmental Neuroscience, 55, 9-14. https://doi.org/10.1016/j.ijdevneu.2016.09.004.
      Viott, R. C., Menezes, T. A., Mellagi, A. P. G., Bernardi, M. L., Wentz, I., & Bortolozzo, F. P. (2018). Performance of low birth-weight piglets upon energy and/or colostrum supplementation. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70, 1293-1300. https://doi.org/10.1590/1678-4162-9798.
      vom Saal, F. S., Quadagno, D. M., Even, M. D., Keisler, L. W., Keisler, D. H., & Khan, S. (1990). Paradoxical effects of maternal stress on fetal steroids and postnatal reproductive traits in female mice from different intrauterine positions. Biology of Reproduction, 43(5), 751-761. https://doi.org/10.1095/biolreprod43.5.751.
      Wang, J., Chen, L., Li, D., Yin, Y., Wang, X., Li, P., Dangott, L. J., Hu, W., & Wu, G. (2008). Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. Journal of Nutrition, 138(1), 60-66. https://doi.org/10.1093/jn/138.1.60.
      Wang, L., Zhang, S., Johnston, L. J., Levesque, C. L., Yin, J., & Dong, B. (2022). A systematic review and meta-analysis of dietary fat effects on reproductive performance of sows and growth performance of piglets. Journal of Animal Science and Biotechnology, 13(1), 12. https://doi.org/10.1186/s40104-021-00662-3.
      Wang, T., Huo, Y. J., Shi, F., Xu, R. J., & Hutz, R. J. (2005). Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biology of the Neonate, 88, 66-72. https://doi.org/10.1159/000084645.
      Wang, W., Degroote, J., Van Ginneken, C., Van Poucke, M., Vergauwen, H., Dam, T. M. T., Vanrompay, D., Peelman, L. J., De Smet, S., & Michiels, J. (2016). Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB Journal, 30(2), 863-873. https://doi.org/10.1096/fj.15-274779.
      Wellington, M. O., Rodrigues, L. A., Li, Q., Dong, B., Panisson, J. C., Yang, C., & Columbus, D. A. (2021). Birth weight and nutrient restriction affect jejunal enzyme activity and gene markers for nutrient transport and intestinal function in piglets. Animals, 11(9), 2672. https://doi.org/10.3390/ani11092672.
      Wolter, B. F., Ellis, M., Corrigan, B. P., & DeDecker, J. M. (2002). The effect of birth weight and feeding of supplemental milk replacer to piglets during lactation on preweaning and postweaning growth performance and carcass characteristics. Journal of Animal Science, 80(2), 301-308. https://doi.org/10.2527/2002.802301x.
      Wootton, R., McFadyen, I. R., & Cooper, J. E. (1977). Measurement of placental blood flow in the pig and its relation to placental and fetal weight. Biology of the Neonate, 31(5−6), 333-339. https://doi.org/10.1159/000240984.
      Wu, G., Bazer, F. W., Johnson, G. A., Herring, C., Seo, H., Dai, Z., Wang, J., Wu, Z., & Wang, X. (2017). Functional amino acids in the development of the pig placenta. Molecular Reproduction and Development, 84(9), 870-882. https://doi.org/10.1002/mrd.22809.
      Wu, G., Bazer, F. W., Wallace, J. L., & Spencer, T. E. (2006). Intra-uterine growth retardation: Implications for the animal sciences. Journal of Animal Science, 84, 2316-2337. https://doi.org/10.2527/jas.2006-156.
      Xiong, L., You, J., Zhang, W., Zhu, Q., Blachier, F., Yin, Y., & Kong, X. (2020). Intrauterine growth restriction alters growth performance, plasma hormones, and small intestinal microbial communities in growing-finishing pigs. Journal of Animal Science and Biotechnology, 11(1), 86. https://doi.org/10.1186/s40104-020-00490-x.
      Zhang, L., Zhang, J., Yan, E., He, J., Zhong, X., Zhang, L., Wang, C., & Wang, T. (2020). Dietary supplemented curcumin improves meat quality and antioxidant status of intrauterine growth retardation growing pigs via Nrf2 signal pathway. Animals, 10(3), 539. https://doi.org/10.3390/ani10030539.
    • Contributed Indexing:
      Keywords: birth weight; development; growth restriction; piglet; sex
    • Publication Date:
      Date Created: 20220602 Date Completed: 20231023 Latest Revision: 20231026
    • Publication Date:
      20240105
    • Accession Number:
      10.1002/mrd.23614
    • Accession Number:
      35652465