Efficient and Fast Generation of Relevant Disease Mouse Models by In Vitro and In Vivo Gene Editing of Zygotes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Mary Ann Liebert, Inc Country of Publication: United States NLM ID: 101738191 Publication Model: Print Cited Medium: Internet ISSN: 2573-1602 (Electronic) Linking ISSN: 25731599 NLM ISO Abbreviation: CRISPR J Subsets: MEDLINE
    • Publication Information:
      Original Publication: [New Rochelle, NY] : Mary Ann Liebert, Inc., [2018]-
    • Subject Terms:
    • Abstract:
      Knockout mice for human disease-causing genes provide valuable models in which new therapeutic approaches can be tested. Electroporation of genome editing tools into zygotes, in vitro or within oviducts, allows for the generation of targeted mutations in a shorter time. We have generated mouse models deficient in genes involved in metabolic rare diseases (Primary Hyperoxaluria Type 1 Pyruvate Kinase Deficiency) or in a tumor suppressor gene ( Rasa1 ). Pairs of guide RNAs were designed to generate controlled deletions that led to the absence of protein. In vitro or in vivo ribonucleoprotein (RNP) electroporation rendered more than 90% and 30% edited newborn animals, respectively. Mice lines with edited alleles were established and disease hallmarks have been verified in the three models that showed a high consistency of results and validating RNP electroporation into zygotes as an efficient technique for disease modeling without the need to outsource to external facilities.
    • References:
      Nat Protoc. 2018 Jun;13(6):1253-1274. (PMID: 29748649)
      Sci Rep. 2015 Jun 11;5:11315. (PMID: 26066060)
      Urolithiasis. 2019 Feb;47(1):67-78. (PMID: 30430197)
      Cell. 2013 May 9;153(4):910-8. (PMID: 23643243)
      Nat Protoc. 2019 Aug;14(8):2452-2482. (PMID: 31341289)
      Mol Ther. 2011 May;19(5):870-5. (PMID: 21119625)
      PLoS Comput Biol. 2017 Mar 2;13(3):e1005341. (PMID: 28253259)
      Nature. 1995 Oct 26;377(6551):695-701. (PMID: 7477259)
      Science. 1981 Dec 11;214(4526):1244-6. (PMID: 6272397)
      Genome Biol. 2018 Feb 26;19(1):25. (PMID: 29482575)
      Biotechniques. 2014 Sep 01;57(3):115-24. (PMID: 25209046)
      Blood Cells Mol Dis. 2007 Jul-Aug;39(1):63-9. (PMID: 17466543)
      Dis Model Mech. 2016 Feb;9(2):101-3. (PMID: 26839397)
      Genesis. 2007 Dec;45(12):762-7. (PMID: 18064675)
      Nat Biotechnol. 2003 May;21(5):559-61. (PMID: 12679785)
      Nat Biotechnol. 2014 Jul;32(7):677-83. (PMID: 24837660)
      Nephrol Dial Transplant. 2012 May;27(5):1729-36. (PMID: 22547750)
      Sci Rep. 2015 Jun 22;5:11406. (PMID: 26096991)
      J Biol Chem. 2014 Aug 1;289(31):21312-24. (PMID: 24907273)
      Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18249-54. (PMID: 17110443)
      Nat Cell Biol. 2007 Sep;9(9):993-9. (PMID: 17762889)
      Cell. 2013 Sep 12;154(6):1370-9. (PMID: 23992847)
      Br J Haematol. 2005 Jul;130(1):11-25. (PMID: 15982340)
      Genetics. 2015 Jun;200(2):423-30. (PMID: 25819794)
      Dis Model Mech. 2019 Jan 8;12(1):. (PMID: 30626588)
      FEBS Lett. 1986 May 26;201(1):20-4. (PMID: 3709805)
      Dev Biol. 2014 Sep 1;393(1):3-9. (PMID: 24984260)
      Cell. 2014 Jun 5;157(6):1262-1278. (PMID: 24906146)
      J Biol Chem. 2016 Jul 8;291(28):14457-67. (PMID: 27151215)
      Sci Rep. 2018 Jan 11;8(1):474. (PMID: 29323173)
      Dev Growth Differ. 2019 Jun;61(5):306-315. (PMID: 31198998)
      PLoS One. 2018 May 3;13(5):e0196891. (PMID: 29723268)
      Mol Ther Methods Clin Dev. 2020 Oct 15;19:426-437. (PMID: 33294491)
      Stem Cells Dev. 2010 Nov;19(11):1699-711. (PMID: 20446816)
    • Accession Number:
      0 (Ribonucleoproteins)
    • Publication Date:
      Date Created: 20220610 Date Completed: 20220614 Latest Revision: 20240221
    • Publication Date:
      20240221
    • Accession Number:
      PMC9233508
    • Accession Number:
      10.1089/crispr.2022.0013
    • Accession Number:
      35686982