Cooperation between KDM6B overexpression and TET2 deficiency in the pathogenesis of chronic myelomonocytic leukemia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group, Specialist Journals Country of Publication: England NLM ID: 8704895 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5551 (Electronic) Linking ISSN: 08876924 NLM ISO Abbreviation: Leukemia Subsets: MEDLINE
    • Publication Information:
      Publication: 2000- : London : Nature Publishing Group, Specialist Journals
      Original Publication: [Baltimore, Md.] : Williams & Wilkins, [c1987-
    • Subject Terms:
    • Abstract:
      Loss-of-function TET2 mutations are recurrent somatic lesions in chronic myelomonocytic leukemia (CMML). KDM6B encodes a histone demethylase involved in innate immune regulation that is overexpressed in CMML. We conducted genomic and transcriptomic analyses in treatment naïve CMML patients and observed that the patients carrying both TET2 mutations and KDM6B overexpression constituted 18% of the cohort and 42% of patients with TET2 mutations. We therefore hypothesized that KDM6B overexpression cooperated with TET2 deficiency in CMML pathogenesis. We developed a double-lesion mouse model with both aberrations, and discovered that the mice exhibited a more prominent CMML-like phenotype than mice with either Tet2 deficiency or KDM6B overexpression alone. The phenotype includes monocytosis, anemia, splenomegaly, and increased frequencies and repopulating activity of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). Significant transcriptional alterations were identified in double-lesion mice, which were associated with activation of proinflammatory signals and repression of signals maintaining genome stability. Finally, KDM6B inhibitor reduced BM repopulating activity of double-lesion mice and tumor burden in mice transplanted with BM-HSPCs from CMML patients with TET2 mutations. These data indicate that TET2 deficiency and KDM6B overexpression cooperate in CMML pathogenesis of and that KDM6B could serve as a potential therapeutic target in this disease.
      (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301. (PMID: 1947442610.1056/NEJMoa0810069)
      Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41:838–42. (PMID: 1948368410.1038/ng.391)
      Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gaken J, Lea NC, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116:3923–32. (PMID: 2069343010.1182/blood-2010-03-274704)
      Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lepine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130:753–62. (PMID: 2865578010.1182/blood-2017-04-777029)
      Genovese G, Jaiswal S, Ebert BL, McCarroll SA. Clonal hematopoiesis and blood-cancer risk. N Engl J Med. 2015;372:1071–2. (PMID: 2576036110.1056/NEJMc1500684)
      Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8. (PMID: 25326804431387210.1038/nm.3733)
      Jaiswal S, Ebert BL Clonal hematopoiesis in human aging and disease. Science. 2019;366:eaan4673.
      Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM, Mayassi T, et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature. 2018;557:580–4. (PMID: 29769727623895410.1038/s41586-018-0125-z)
      Cai ZG, Kotzin JJ, Ramdas B, Chen SS, Nelanuthala S, Palam LR, et al. Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell. 2018;23:833. (PMID: 30526882631737010.1016/j.stem.2018.10.013)
      Muto T, Walker CS, Choi K, Hueneman K, Smith MA, Gul Z, et al. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol. 2020;21:535–45. (PMID: 32313245740248010.1038/s41590-020-0663-z)
      Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8:18–30. (PMID: 1869215910.1016/j.arr.2008.07.002)
      Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22. (PMID: 30065258614693010.1038/s41569-018-0064-2)
      Ganan-Gomez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 2015;29:1458–69. (PMID: 25761935485713610.1038/leu.2015.69)
      Trowbridge JJ, Starczynowski DT Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med. 2021;218:e20201544.
      Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D, et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27:1832–40. (PMID: 23765228401166310.1038/leu.2013.180)
      Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest. 2013;123:4595–611. (PMID: 24216507380977910.1172/JCI67580)
      Fang J, Bolanos LC, Choi K, Liu X, Christie S, Akunuru S, et al. Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nat Immunol. 2017;18:236–45. (PMID: 2802415210.1038/ni.3654)
      Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell. 2013;24:90–104. (PMID: 23845443371110310.1016/j.ccr.2013.05.006)
      Dimicoli S, Wei Y, Bueso-Ramos C, Yang H, Dinardo C, Jia Y, et al. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS One. 2013;8:e71120. (PMID: 23976989374456210.1371/journal.pone.0071120)
      Varney ME, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212:1967–85. (PMID: 26458771461208910.1084/jem.20141898)
      Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16:49–58. (PMID: 1989848910.1038/nm.2054)
      Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 2019;21:640–50. (PMID: 31011167667997310.1038/s41556-019-0314-5)
      Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4. (PMID: 1771347810.1038/nature06145)
      Wei Y, Zheng H, Bao N, Jiang S, Bueso-Ramos CE, Khoury J, et al. KDM6B overexpression activates innate immune signaling and impairs hematopoiesis in mice. Blood Adv. 2018;2:2491–504. (PMID: 30275007617765710.1182/bloodadvances.2018024166)
      Wei Y, Chen R, Dimicoli S, Bueso-Ramos C, Neuberg D, Pierce S, et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia. 2013;27:2177–86. (PMID: 23538751447631010.1038/leu.2013.91)
      De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009;28:3341–52. (PMID: 19779457275202510.1038/emboj.2009.271)
      Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol. 2011;186:5367–75. (PMID: 2144144510.4049/jimmunol.1003438)
      Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24. (PMID: 21723200319403910.1016/j.ccr.2011.06.001)
      Montalban-Bravo G, Darbaniyan F, Kanagal-Shamanna R, Ganan-Gomez I, Class CA, Sasaki K, et al. Type I interferon upregulation and deregulation of genes involved in monopoiesis in chronic myelomonocytic leukemia. Leuk Res. 2021;101:106511. (PMID: 3351718610.1016/j.leukres.2021.106511)
      Herold M, Schmalzl F, Zwierzina H. Increased serum interleukin 6 levels in patients with myelodysplastic syndromes. Leuk Res. 1992;16:585–8. (PMID: 163537610.1016/0145-2126(92)90006-S)
      Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, et al. PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1. Cell. 2015;161:1293–305. (PMID: 26046437450323710.1016/j.cell.2015.04.050)
      Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7. Database issue. (PMID: 2106799810.1093/nar/gkq1018)
      Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362–74. (PMID: 2600859110.1038/nri3834)
      Yamashita M, Passegue E. TNF-alpha coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell. 2019;25:357–72 e7. (PMID: 31230859673303210.1016/j.stem.2019.05.019)
      Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells. 2017;6:11.
      Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S, et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol. 2018;19:932–41. (PMID: 30127433619518810.1038/s41590-018-0184-1)
      Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9. (PMID: 2190911410.1038/nature10496)
      Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404–8. (PMID: 22842901469184810.1038/nature11262)
      Nakamura S, Ohnishi K, Yoshida H, Shinjo K, Takeshita A, Tohyama K, et al. Retrovirus-mediated gene transfer of granulocyte colony-stimulating factor receptor (G-CSFR) cDNA into MDS cells and induction of their differentiation by G-CSF. Cytokines Cell Mol Ther. 2000;6:61–70. (PMID: 1110857110.1080/13684730050515787)
      Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood. 2011;117:3076–86. (PMID: 21252091306231010.1182/blood-2010-08-301507)
      Yoshimi A, Balasis ME, Vedder A, Feldman K, Ma Y, Zhang H, et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood. 2017;130:397–407. (PMID: 28576879553320410.1182/blood-2017-01-763219)
      Zhang Y, He L, Selimoglu-Buet D, Jego C, Morabito M, Willekens C, et al. Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv. 2017;1:972–9. (PMID: 29296739573759410.1182/bloodadvances.2017004903)
      Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–201. (PMID: 21555486317324310.1084/jem.20101823)
      Mallaney C, Ostrander EL, Celik H, Kramer AC, Martens A, Kothari A, et al. Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis. Leukemia. 2019;33:2506–21. (PMID: 30936419677352110.1038/s41375-019-0462-4)
      Lindsley RC, Ebert BL. The biology and clinical impact of genetic lesions in myeloid malignancies. Blood. 2013;122:3741–8. (PMID: 2395489010.1182/blood-2013-06-460295)
      Nguyen HD, Leong WY, Li W, Reddy PNG, Sullivan JD, Walter MJ. et al. Spliceosome mutations induce R Loop-Associated Sensitivity to ATR Inhibition in Myelodysplastic Syndromes. Cancer Res. 2018;78:5363–74. (PMID: 30054334613904710.1158/0008-5472.CAN-17-3970)
      Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20:1394–6. (PMID: 25401693425786210.1038/nm.3716)
      Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513–7. (PMID: 25132549420920310.1038/nature13605)
    • Accession Number:
      0 (DNA-Binding Proteins)
      0 (Proto-Oncogene Proteins)
      EC 1.13.11.- (Dioxygenases)
      EC 1.13.11.- (TET2 protein, human)
      EC 1.13.11.- (Tet2 protein, mouse)
      EC 1.14.11.- (Jumonji Domain-Containing Histone Demethylases)
      EC 1.14.11.- (KDM6B protein, human)
      EC 1.5.- (Kdm6b protein, mouse)
    • Publication Date:
      Date Created: 20220613 Date Completed: 20220803 Latest Revision: 20220808
    • Publication Date:
      20240105
    • Accession Number:
      10.1038/s41375-022-01605-1
    • Accession Number:
      35697791