Structural and functional determinants inferred from deep mutational scans.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Cold Spring Harbor Laboratory Press Country of Publication: United States NLM ID: 9211750 Publication Model: Print Cited Medium: Internet ISSN: 1469-896X (Electronic) Linking ISSN: 09618368 NLM ISO Abbreviation: Protein Sci Subsets: MEDLINE
    • Publication Information:
      Publication: 2001- : Woodbury, NY : Cold Spring Harbor Laboratory Press
      Original Publication: New York, N.Y. : Cambridge University Press, c1992-
    • Subject Terms:
    • Abstract:
      Mutations that affect protein binding to a cognate partner primarily occur either at buried residues or at exposed residues directly involved in partner binding. Distinguishing between these two categories based solely on mutational phenotypes is challenging. The bacterial toxin CcdB kills cells by binding to DNA Gyrase. Cell death is prevented by binding to its cognate antitoxin CcdA, at an extended interface that partially overlaps with the GyrA binding site. Using the CcdAB toxin-antitoxin (TA) system as a model, a comprehensive site-saturation mutagenesis library of CcdB was generated in its native operonic context. The mutational sensitivity of each mutant was estimated by evaluating the relative abundance of each mutant in two strains, one resistant and the other sensitive to the toxic activity of the CcdB toxin, through deep sequencing. The ability to bind CcdA was inferred through a RelE reporter gene assay, since the CcdAB complex binds to its own promoter, repressing transcription. By analyzing mutant phenotypes in the CcdB-sensitive, CcdB-resistant, and RelE reporter strains, it was possible to assign residues to buried, CcdA interacting or GyrA interacting sites. A few mutants were individually constructed, expressed, and biophysically characterized to validate molecular mechanisms responsible for the observed phenotypes. Residues inferred to be important for antitoxin binding, are also likely to be important for rejuvenating CcdB from the CcdB-Gyrase complex. Therefore, even in the absence of structural information, when coupled to appropriate genetic screens, such high-throughput strategies can be deployed for predicting structural and functional determinants of proteins.
      (© 2022 The Protein Society.)
    • References:
      Mol Cell. 2009 Jul 31;35(2):154-63. (PMID: 19647513)
      J Mol Biol. 2005 May 20;348(5):1091-102. (PMID: 15854646)
      Elife. 2015 Dec 30;4:. (PMID: 26716404)
      Nucleic Acids Res. 2006;34(17):4667-76. (PMID: 16963775)
      Structure. 2012 Feb 8;20(2):371-81. (PMID: 22325784)
      Protein Eng. 2000 Jun;13(6):397-405. (PMID: 10877850)
      J Biotechnol. 2019 Mar 20;294:58-66. (PMID: 30768999)
      J Mol Biol. 2009 Nov 27;394(2):183-96. (PMID: 19747491)
      Proc Natl Acad Sci U S A. 2004 May 25;101(21):7925-30. (PMID: 15148363)
      Nucleic Acids Res. 2013 Dec;41(22):e204. (PMID: 24203710)
      Structure. 2017 Mar 7;25(3):395-406. (PMID: 28132782)
      Nucleic Acids Res. 2020 Oct 9;48(18):10527-10541. (PMID: 32845304)
      Semin Cell Dev Biol. 2011 Jul;22(5):482-7. (PMID: 21571086)
      Cell. 2015 Feb 26;160(5):882-892. (PMID: 25723163)
      PLoS One. 2017 Jul 18;12(7):e0181501. (PMID: 28719630)
      Nucleic Acids Res. 2015 Jul 27;43(13):e83. (PMID: 25800749)
      Nat Methods. 2010 Sep;7(9):741-6. (PMID: 20711194)
      Anal Biochem. 2014 Mar 15;449:90-8. (PMID: 24333246)
      J Am Chem Soc. 2011 Jan 12;133(1):4-7. (PMID: 21142052)
      Nucleic Acids Res. 2018 Jul 6;46(12):6371-6386. (PMID: 29878152)
      J Biol Chem. 2014 Jan 10;289(2):1060-70. (PMID: 24257752)
      Structure. 2020 May 5;28(5):562-572.e4. (PMID: 32294467)
      Chem Rev. 2014 Jul 9;114(13):6933-47. (PMID: 24806488)
      Front Mol Biosci. 2021 Mar 11;8:635425. (PMID: 33778004)
      Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14494-14497. (PMID: 28914483)
      Nat Commun. 2019 Feb 15;10(1):782. (PMID: 30770830)
      Brief Funct Genomic Proteomic. 2008 Jul;7(4):291-302. (PMID: 18599513)
      Mol Gen Genet. 1989 Oct;219(1-2):26-32. (PMID: 2615761)
      Catalysts. 2017;7(7):. (PMID: 30464857)
      Mol Biol Evol. 2016 Nov;33(11):2960-2975. (PMID: 27563054)
      Proteins. 2014 May;82(5):879-84. (PMID: 24115125)
      Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
      J Bacteriol. 1998 Dec;180(23):6342-51. (PMID: 9829946)
      Bioinformatics. 2004 May 22;20(8):1322-4. (PMID: 14871869)
      Nucleic Acids Res. 1997 Jan 15;25(2):447-8. (PMID: 9016577)
      Comput Struct Biotechnol J. 2020 Jan 22;18:1301-1310. (PMID: 32612753)
    • Contributed Indexing:
      Keywords: active-site; fitness; gene regulation; protein structure prediction; residue burial
    • Accession Number:
      0 (Antitoxins)
      0 (Bacterial Proteins)
      EC 5.99.1.3 (DNA Gyrase)
    • Publication Date:
      Date Created: 20220628 Date Completed: 20220630 Latest Revision: 20230703
    • Publication Date:
      20240105
    • Accession Number:
      PMC9202547
    • Accession Number:
      10.1002/pro.4357
    • Accession Number:
      35762712