The effect of poly I:C or LPS priming on the therapeutic efficacy of mesenchymal stem cells in an adjuvant-induced arthritis rat model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101234999 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2299-5684 (Electronic) Linking ISSN: 17341140 NLM ISO Abbreviation: Pharmacol Rep Subsets: MEDLINE
    • Publication Information:
      Publication: 2020- : Cham, Switzerland : Springer International Publishing
      Original Publication: Kraków, Poland : Institute of Pharmacology, Polish Academy of Sciences, c2005-
    • Subject Terms:
    • Abstract:
      Background: The immunomodulatory properties of mesenchymal stem cells (MSCs) have made them a prospective treatment option for inflammatory and autoimmune disorders. Recent studies have found an association between the immunomodulatory function of MSCs and Toll-like receptors (TLRs). Here, we investigated the effect of priming with lipopolysaccharide (LPS) as TLR4 ligand or polyinosinic:polycytidylic acid (poly I:C) as TLR3 ligand on the immunomodulatory function of adipose-derived MSCs (ADMSCs) in vitro and for the first time in an adjuvant-induced arthritis model (AIA).
      Methods: ADMSCs were treated with LPS or poly I:C for 1 h. Splenocyte proliferation in the presence of primed ADMSCs was assessed in vitro using an MTT assay. Next, we investigated the therapeutic effect of primed ADMSCs in vivo. Male Wistar rats were infused with complete Freund's adjuvant (CFA) to develop arthritis and then intraperitoneally treated with not-primed, poly I:C- or LPS-primed ADMSCs. Clinical signs, histopathological alteration, and serum and spleen cytokine levels were analyzed.
      Results: Poly I:C-primed ADMSCs significantly reduced splenocytes proliferation, while ADMSCs primed with LPS increased splenocytes proliferation. Furthermore, poly I:C-primed ADMSCs significantly alleviated the clinical and histopathological severity and the secretion of inflammatory cytokines associated with Th17/Th1 such as IL-17 and IFN-γ. Poly I:C-primed ADMSCs also increased cytokines IL-10 and TGF-β. TNF-α and IL-6 Levels were also markedly diminished in the serum of AIA animals treated with poly I:C-primed ADMSCs. In contrast, priming ADMSCs with LPS significantly reduced the therapeutic effect of ADMSCs in AIA animals.
      Conclusion: As a result of these findings, poly I:C priming may be a new technique for improving the therapeutic effects of MSCs in arthritic disorders.
      (© 2022. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.)
    • References:
      Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61. (PMID: 1274865510.1038/nature01661)
      Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51(suppl_5):v3-11. (PMID: 10.1093/rheumatology/kes113)
      Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum. 1992;35(7):729–35. (PMID: 162240910.1002/art.1780350702)
      Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. Arthritis Res Ther. 2005;7 Suppl 2(2):S4-14. (PMID: 1583314610.1186/ar1703)
      Tran CN, Lundy SK, Fox DA. Synovial biology and T cells in rheumatoid arthritis. Pathophysiology. 2005;12(3):183–9. (PMID: 1611256010.1016/j.pathophys.2005.07.005)
      Shahrara S, Huang Q, Mandelin AM 2nd, Pope RM. TH-17 cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):R93. (PMID: 18710567257560710.1186/ar2477)
      Rodeghero R, Cao Y, Olalekan SA, Iwakua Y, Glant TT, Finnegan AJT. Location of CD4+ T cell priming regulates the differentiation of Th1 and Th17 cells and their contribution to arthritis. J Immunol. 2013;190(11):5423–35. (PMID: 2363034910.4049/jimmunol.1203045)
      Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907–16. (PMID: 1125972510.1056/NEJM200103223441207)
      McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42. (PMID: 1752575210.1038/nri2094)
      Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14(1):397–440. (PMID: 871752010.1146/annurev.immunol.14.1.397)
      Gabay C, Riek M, Scherer A, Finckh A, Physicians SC. Effectiveness of biologic DMARDs in monotherapy versus in combination with synthetic DMARDs in rheumatoid arthritis: data from the Swiss Clinical Quality Management Registry. Rheumatology (Oxford). 2015;54(9):1664–72. (PMID: 10.1093/rheumatology/kev019)
      Simon LS, Weaver AL, Graham DY, Kivitz AJ, Lipsky PE, Hubbard RC, et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. JAMA. 1999;282(20):1921–8. (PMID: 1058045710.1001/jama.282.20.1921)
      Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet. 2008;371(9617):987–97. (PMID: 1835892610.1016/S0140-6736(08)60453-5)
      Salliot C, Gossec L, Ruyssen-Witrand A, Luc M, Duclos M, Guignard S, et al. Infections during tumour necrosis factor-alpha blocker therapy for rheumatic diseases in daily practice: a systematic retrospective study of 709 patients. Rheumatology (Oxford). 2007;46(2):327–34. (PMID: 10.1093/rheumatology/kel236)
      Aygun D, Kaplan S, Odaci E, Onger ME, Altunkaynak ME. Toxicity of non-steroidal anti-inflammatory drugs: a review of melatonin and diclofenac sodium association. Histol Histopathol. 2012;27(4):417–36. (PMID: 22374720)
      Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. (PMID: 1010281410.1126/science.284.5411.143)
      Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36. (PMID: 1917269310.1038/nri2395)
      Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9. (PMID: 1250603710.1182/blood-2002-07-2104)
      Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12. (PMID: 2051154810.4049/jimmunol.0902007)
      Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology. 2020;28(2):585–601. (PMID: 3174117510.1007/s10787-019-00661-x)
      Rafei M, Birman E, Forner K, Galipeau J. Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Mol Ther. 2009;17(10):1799–803. (PMID: 19602999283501110.1038/mt.2009.157)
      Sadeghi S, Mosaffa N, Hashemi SM, Mehdi Naghizadeh M, Ghazanfari T. The immunomodulatory effects of mesenchymal stem cells on long term pulmonary complications in an animal model exposed to a sulfur mustard analog. Int Immunopharmacol. 2020;80: 105879. (PMID: 3176754510.1016/j.intimp.2019.105879)
      Alvaro-Gracia JM, Jover JA, Garcia-Vicuna R, Carreno L, Alonso A, Marsal S, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis. 2017;76(1):196–202. (PMID: 2726929410.1136/annrheumdis-2015-208918)
      Kehoe O, Cartwright A, Askari A, El Haj AJ, Middleton J. Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis. J Transl Med. 2014;12(1):157. (PMID: 24893776405330610.1186/1479-5876-12-157)
      Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22(24):3192–202. (PMID: 2394128910.1089/scd.2013.0023)
      Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny MJ. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J Stem Cells. 2012;4(10):101. (PMID: 23189211350696410.4252/wjsc.v4.i10.101)
      Hwa Cho H, Bae YC, Jung JS. Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells. 2006;24(12):2744–52. (PMID: 1690219510.1634/stemcells.2006-0189)
      DelaRosa O, Dalemans W, Lombardo EJ. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol. 2012;3:182. (PMID: 22783256338765110.3389/fimmu.2012.00182)
      Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–95. (PMID: 1545492210.1038/ni1112)
      Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells. 2008;26(1):99–107. (PMID: 1791680010.1634/stemcells.2007-0563)
      Hwang SH, Cho HK, Park SH, Lee W, Lee HJ, Lee DC, et al. Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PLoS ONE. 2014;9(7): e101558. (PMID: 25004159408681610.1371/journal.pone.0101558)
      Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5(4): e10088. (PMID: 20436665285993010.1371/journal.pone.0010088)
      Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol. 2019;74: 105689. (PMID: 3120740410.1016/j.intimp.2019.105689)
      Rahavi H, Hashemi SM, Soleimani M, Mohammadi J, Tajik NJ. Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model. J Diabetes Res. 2015;2015:1–10. (PMID: 10.1155/2015/878535)
      Newbould BB. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother. 1963;21(1):127–36. (PMID: 14066137170386610.1111/j.1476-5381.1963.tb01508.x)
      Banji D, Pinnapureddy J, Banji OJ, Saidulu A, Hayath MS. Synergistic activity of curcumin with methotrexate in ameliorating Freund's Complete Adjuvant induced arthritis with reduced hepatotoxicity in experimental animals. 2011;668(1-2):293-8.
      Chang Y, Wu Y, Wang D, Wei W, Qin Q, Xie G, et al. Therapeutic effects of TACI-Ig on rats with adjuvant-induced arthritis via attenuating inflammatory responses. Rheumatology (Oxford). 2011;50(5):862–70. (PMID: 10.1093/rheumatology/keq404)
      Nishikawa M, Myoui A, Tomita T, Takahi K, Nampei A, Yoshikawa H. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum. 2003;48(9):2670–81. (PMID: 1313048810.1002/art.11227)
      DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm. 2010;2010: 865601. (PMID: 20628526290212410.1155/2010/865601)
      Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007;109(4):1422–32. (PMID: 1703853010.1182/blood-2006-06-028704)
      Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells. 2009;27(4):909–19. (PMID: 1935351910.1002/stem.7)
      Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008;26(1):279–89. (PMID: 1796270110.1634/stemcells.2007-0454)
      Vega-Letter AM, Kurte M, Fernandez-O’Ryan C, Gauthier-Abeliuk M, Fuenzalida P, Moya-Uribe I, et al. Differential TLR activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in EAE. Stem Cell Res Ther. 2016;7(1):150. (PMID: 27724984505748210.1186/s13287-016-0402-4)
      Zhao X, Liu D, Gong W, Zhao G, Liu L, Yang L, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells. 2014;32(2):521–33. (PMID: 2410595210.1002/stem.1543)
      Fuenzalida P, Kurte M, Fernandez-O’Ryan C, Ibañez C, Gauthier-Abeliuk M, Vega-Letter AM, et al. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium–induced colitis model. Cytotherapy. 2016;18(5):630–41. (PMID: 2705920010.1016/j.jcyt.2016.02.002)
      Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787–93. (PMID: 889300110.1038/383787a0)
      Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine. 2015;74(1):101–7. (PMID: 2546629510.1016/j.cyto.2014.10.006)
      Fournier C. Where do T cells stand in rheumatoid arthritis? Jt Bone Spine. 2005;72(6):527–32. (PMID: 10.1016/j.jbspin.2004.12.012)
      Ayenehdeh JM, Niknam B, Rasouli S, Hashemi SM, Rahavi H, Rezaei N, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunol Lett. 2017;188:21–31. (PMID: 10.1016/j.imlet.2017.05.006)
      González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado MJA. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(4):1006–19. (PMID: 1933394610.1002/art.24405)
      Park A, Park H, Yoon J, Kang D, Kang MH, Park YY, et al. Priming with Toll-like receptor 3 agonist or interferon-gamma enhances the therapeutic effects of human mesenchymal stem cells in a murine model of atopic dermatitis. Stem Cell Res Ther. 2019;10(1):66. (PMID: 30795812638752410.1186/s13287-019-1164-6)
      Qiu Y, Guo J, Mao R, Chao K, Chen BL, He Y, et al. TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol. 2017;10(3):727–42. (PMID: 2764992810.1038/mi.2016.78)
      Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol. 2019;74: 105687. (PMID: 3129568910.1016/j.intimp.2019.105687)
      Yan X, Cen Y, Wang Q. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression. Nature. 2016;6(1):1–12.
      Nishimoto N. Interleukin-6 in rheumatoid arthritis. Curr Opin Rheumatol. 2006;18(3):277–81. (PMID: 1658269210.1097/01.bor.0000218949.19860.d1)
      Bloor AJ, Patel A, Griffin JE, Gilleece MH, Radia R, Yeung DT, et al. Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: a phase I, multicenter, open-label, dose-escalation study. Nat Med. 2020;26(11):1720–5. (PMID: 3292926510.1038/s41591-020-1050-x)
      Zhao C, Ikeya M. Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018;2018:1–8.
    • Contributed Indexing:
      Keywords: Adjuvant-induced arthritis; Immunomodulation; LPS; Mesenchymal stem cells; Poly I:C; Toll-like receptor
    • Accession Number:
      0 (Cytokines)
      0 (Ligands)
      0 (Lipopolysaccharides)
      O84C90HH2L (Poly I-C)
    • Publication Date:
      Date Created: 20220717 Date Completed: 20220805 Latest Revision: 20220811
    • Publication Date:
      20240104
    • Accession Number:
      10.1007/s43440-022-00386-9
    • Accession Number:
      35842893