Carbonic anhydrase IX stratifies patient prognosis and identifies nodal status in animal models of nasopharyngeal carcinoma using a targeted imaging strategy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Berlin Country of Publication: Germany NLM ID: 101140988 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1619-7089 (Electronic) Linking ISSN: 16197070 NLM ISO Abbreviation: Eur J Nucl Med Mol Imaging Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer-Verlag Berlin, 2002-
    • Subject Terms:
    • Abstract:
      Purpose: Accurate identification of nodal status enables adequate neck irradiation for nasopharyngeal carcinoma (NPC). However, most conventional techniques are unable to pick up occult metastases, leading to underestimation of tumor extensions. Here we investigate the clinical significance of carbonic anhydrase IX (CAIX) in human NPC samples, and develop a CAIX-targeted imaging strategy to identify occult lymph node metastases (LNMs) and extranodal extension (ENE) in animal studies.
      Methods: A total of 211 NPC samples are performed CAIX staining, and clinical outcomes are analyzed. The metastatic murine models are generated by foot pad injection of NPC cells, and a CAIX-targeted imaging agent (CAIX-800) is intravenously administered. We adopt fluorescence molecular tomography and ultrasonography (US)-guided spectroscopic photoacoustic (sPA) imaging to perform in vivo studies. Histological and immunohistochemical characterization are carried out via node-by-node analysis.
      Results: For clinical samples, 90.1% (91/101) primary tumors, 73.3% (66/90) metastases, and 100% (20/20) local recurrences are CAIX positive. In metastases group, 84.7% (61/72) nodal metastases and 22.2% (4/18) organ metastases are CAIX positive. CAIX expression in primary tumors is significantly associated with NPC stage and prognosis. For animal studies, CAIX-800-based fluorescence imaging achieves 81.3% sensitivity and 93.8% specificity in detecting occult LNMs in vivo, with a minimum detectable diameter of 1.7 mm. Coupled with CAIX-800, US-guided sPA imaging could not only detect subcapsular deposits of metastatic cancer cells 2 weeks earlier than conventional techniques, but also successfully track pathological ENE.
      Conclusion: CAIX remarkably expresses in human NPCs and stratifies patient prognosis. In preclinical studies, CAIX-800-based imaging successfully identifies occult LNMs and tracks early stage of pathological ENE. This attractive method shows potential in clinic, allowing medical workers to longitudinally monitor nodal status and helping to reduce unnecessary nodal biopsy for patients with NPC. The schematic diagram for the study. CAIX, carbonic anhydrase IX; NPC, nasopharyngeal carcinoma; US, ultrasonography; sPA, spectroscopic photoacoustic.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80. (PMID: 31178151)
      Tang XR, Li YQ, Liang SB, Jiang W, Liu F, Ge WX, et al. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. Lancet Oncol. 2018;19:382–93. (PMID: 29428165)
      Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, et al. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol. 2021;18:679–95. (PMID: 34194007)
      Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403–7. (PMID: 295677136002772)
      Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113–8. (PMID: 328148957484468)
      Lydiatt WM, Patel SG, O’Sullivan B, Brandwein MS, Ridge JA, Migliacci JC, et al. Head and neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:122–37. (PMID: 28128848)
      Van den Bosch S, Vogel WV, Raaijmakers CP, Dijkema T, Terhaard CHJ, Al-Mamgani A, et al. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: radiotherapy target volume transformation and dose de-escalation. Radiother Oncol. 2018;128:472–8. (PMID: 29731161)
      McMullen CP, Garneau J, Weimar E, Ali S, Farinhas JM, Yu E, et al. Occult nodal disease and occult extranodal extension in patients with oropharyngeal squamous cell carcinoma undergoing primary transoral robotic surgery with neck dissection. JAMA Otolaryngol Head Neck Surg. 2019;145:701–7. (PMID: 312195216587146)
      Bhattacharya P, Mukherjee R. Lymph node extracapsular extension as a marker of aggressive phenotype: classification, prognosis and associated molecular biomarkers. Eur J Surg Oncol. 2021;47:721–31. (PMID: 32948393)
      Alavi A, Carlin SD, Werner TJ, Al-Zaghal A. Suboptimal sensitivity and specificity of PET and other gross imaging techniques in assessing lymph node metastasis. Mol Imaging Biol. 2019;21:808–11. (PMID: 30675688)
      Nishio N, van den Berg NS, van Keulen S, Martin BA, Fakurnejad S, Teraphongphom N, et al. Optical molecular imaging can differentiate metastatic from benign lymph nodes in head and neck cancer. Nat Commun. 2019;10:5044. (PMID: 316950306834597)
      Civantos FJ, Zitsch RP, Schuller DE, Agrawal A, Smith RB, Nason R, et al. Sentinel lymph node biopsy accurately stages the regional lymph nodes for T1–T2 oral squamous cell carcinomas: results of a prospective multi-institutional trial. J Clin Oncol. 2010;28:1395–400. (PMID: 201426022834497)
      Abdel-Halim CN, Rosenberg T, Dyrvig AK, Høilund-Carlsen PF, Sørensen JA, Rohde M, et al. Diagnostic accuracy of imaging modalities in detection of histopathological extranodal extension: a systematic review and meta-analysis. Oral Oncol. 2021;114:105169. (PMID: 33493691)
      Kann BH, Hicks DF, Payabvash S, Mahajan A, Du J, Gupta V, et al. Multi-institutional validation of deep learning for pretreatment identification of extranodal extension in head and neck squamous cell carcinoma. J Clin Oncol. 2020;38:1304–11. (PMID: 31815574)
      Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175–80. (PMID: 271244514898055)
      Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11:393–410. (PMID: 21606941)
      Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71:3364–76. (PMID: 21415165)
      Tafreshi NK, Bui MM, Bishop K, Lloyd MC, Enkemann SA, Lopez AS, et al. Non-invasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clin Cancer Res. 2012;18:207–19. (PMID: 22016510)
      Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, Saunders MI, et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol. 2006;24:727–35. (PMID: 16418497)
      Hui EP, Chan AT, Pezzella F, Turley H, To KF, Poon TC, et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res. 2002;8:2595–604. (PMID: 12171890)
      Huang W, Wang K, An Y, Meng H, Gao Y, Xiong ZY, et al. In vivo three-dimensional evaluation of tumour hypoxia in nasopharyngeal carcinomas using FMT-CT and MSOT. Eur J Nucl Med Mol Imaging. 2020;47:1027–38. (PMID: 31705175)
      Yu Q, Huang SS, Wu ZY, Zheng JD, Chen XY, Nie LM. Label-free visualization of early cancer hepatic micrometastasis and intraoperative image-guided surgery by photoacoustic imaging. J Nucl Med. 2020;61:1079–85. (PMID: 318067697383080)
      Luke GP, Myers JN, Emelianov SY, Sokolov KV. Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res. 2014;74:5397–408. (PMID: 251064264198334)
      Nishio N, van den Berg NS, Martin BA, van Keulen S, Fakurnejad S, Rosenthal EL, et al. Photoacoustic molecular imaging for the identification of lymph node metastasis in head and neck cancer using an anti-EGFR antibody-dye conjugate. J Nucl Med. 2021;62:648–55. (PMID: 330089278844260)
      Colevas AD, Yom SS, Pfister DG, Spencer S, Adelstein D, Adkins D, et al. NCCN guidelines insights: head and neck cancers, version 1. 2018. J Natl Compr Canc Netw. 2018;16:479–90. (PMID: 29752322)
      Zong D, Yin L, Zhong Q, Guo WJ, Xu JH, Jiang N, et al. ZNF488 enhances the invasion and tumorigenesis in nasopharyngeal carcinoma via the wnt signaling pathway involving epithelial mesenchymal transition. Cancer Res Treat. 2016;48:334–44. (PMID: 25779368)
      Wichert M, Krall N, Decurtins W, Franzini RM, Pretto F, Schneider P, et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat Chem. 2015;7:241–9. (PMID: 25698334)
      Yang X, Minn I, Rowe SP, Banerjee SR, Gorin MA, Brummet M, et al. Imaging of carbonic anhydrase IX with an 111 In-labeled dual-motif inhibitor. Oncotarget. 2015;6:33733–42. (PMID: 264188764741798)
      Ho FC, Tham IW, Earnest A, Lee KM, Lu JJ. Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence. BMC Cancer. 2012;12:98. (PMID: 224336713353248)
      Guo LJ, Liu XM, Hua J, Dai L, Tao Y, Cao HM, et al. Differential detection of metastatic and inflammatory lymph nodes using inflow-based vascular-space-occupancy (iVASO) MR imaging. Magn Reson Imaging. 2022;85:128–32. (PMID: 34687849)
      Krishnan G, van den Berg NS, Nishio N, Juniper G, Pei J, Zhou Q, et al. Metastatic and sentinel lymph node mapping using intravenously delivered Panitumumab-IRDye800CW. Theranostics. 2021;11:7188–98. (PMID: 341588448210603)
      Morawitz J, Bruckmann NM, Dietzel F, Ullrich T, Bittner AK, Hoffmann O, et al. Determining the axillary nodal status with four current imaging modalities including 18 F-FDG PET/MRI in newly diagnosed breast cancer: a comparative study using histopathology as reference standard. J Nucl Med. 2021;62:1677–83. (PMID: 8612201)
      Jones D, Wang Z, Chen IX, Zhang S, Banerji R, Lei PJ, et al. Solid stress impairs lymphocyte infiltration into lymph-node metastases. Nat Biomed Eng. 2021;5:1426–36. (PMID: 34282290)
      Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–87. (PMID: 23149893)
      Liu JN, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev. 2017;117:6160–224. (PMID: 28426202)
      Zhou H, Shen G, Zhang W, Cai H, Zhou Y, Li L. 18 F-FDG PET/CT for the diagnosis of residual or recurrent nasopharyngeal carcinoma after radiotherapy: a meta-analysis. J Nucl Med. 2016;57:342–7. (PMID: 26541775)
      Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y. In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res. 2010;70:3905–14. (PMID: 204422882872139)
      Achen MG, Stacker SA. Exit stage left: a tumor cell’s journey from lymph node to beyond. Trends Cancer. 2018;4:519–22. (PMID: 30064660)
      Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 2019;363:644–9. (PMID: 30733421)
      Xiao BB, Chen QY, Sun XS, Li JB, Luo DH, Sun R, et al. Low value of whole-body dual-modality [ 18 F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in primary staging of stage I-II nasopharyngeal carcinoma: a nest case-control study. Eur Radiol. 2021;31:5222–33. (PMID: 334169778213607)
      Lowe VJ, Duan F, Subramaniam RM, Sicks JD, Romanoff J, Bartel T, et al. Multicenter trial of [ 18 F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography staging of head and neck cancer and negative predictive value and surgical impact in the N0 neck: results from ACRIN 6685. J Clin Oncol. 2019;37:1704–12. (PMID: 307683636638599)
      Cazzamalli S, Dal Corso CA, Neri D. Acetazolamide serves as selective delivery vehicle for dipeptide-linked drugs to renal cell carcinoma. Mol Cancer Ther. 2016;15:2926–35. (PMID: 276096415214883)
      Kulterer OC, Pfaff S, Wadsak W, Garstka N, Remzi M, Vraka C, et al. A microdosing study with 99m Tc-PHC-102 for the SPECT/CT imaging of primary and metastatic lesions in renal cell carcinoma patients. J Nucl Med. 2021;62:360–5. (PMID: 326809258049338)
      Mao Y, Wang S, Lydiatt W, Shah JP, Colevas AD, Lee AWM, et al. Unambiguous advanced radiologic extranodal extension determined by MRI predicts worse outcomes in nasopharyngeal carcinoma: Potential improvement for future editions of N category systems. Radiother Oncol. 2021;157:114–21. (PMID: 33516790)
      Rosenthal EL, Moore LS, Tipirneni K, de Boer E, Stevens TM, Hartman YE, et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res. 2017;23:4744–52. (PMID: 284465035595145)
    • Contributed Indexing:
      Keywords: Carbonic anhydrase IX; Extranodal extension; Nasopharyngeal carcinoma; Occult lymph node metastasis; Ultrasonography-guided spectroscopic photoacoustic imaging
    • Accession Number:
      EC 4.2.1.1 (Carbonic Anhydrase IX)
      EC 4.2.1.1 (Carbonic Anhydrases)
      0 (Biomarkers, Tumor)
      0 (Antigens, Neoplasm)
    • Publication Date:
      Date Created: 20220804 Date Completed: 20221028 Latest Revision: 20221120
    • Publication Date:
      20240104
    • Accession Number:
      10.1007/s00259-022-05922-6
    • Accession Number:
      35925443