Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Country of Publication: United States NLM ID: 101299742 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1935-3456 (Electronic) Linking ISSN: 19330219 NLM ISO Abbreviation: Mucosal Immunol Subsets: MEDLINE
    • Publication Information:
      Publication: 2023- : [New York, NY] : Elsevier
      Original Publication: New York, NY : Nature Pub. Group, c2008-
    • Subject Terms:
    • Abstract:
      Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that can provide insights into the molecular mechanisms at work in host-microbiome interactions and to highlight the undeveloped frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.
      (© 2022. The Author(s), under exclusive licence to Society for Mucosal Immunology.)
    • References:
      Fettig, N. M. & Osborne, L. C. Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes Infect. 23, 104814 (2021). (PMID: 10.1016/j.micinf.2021.10481433775860)
      Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198, 572–580 (2017). (PMID: 10.4049/jimmunol.160124728069752)
      Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017). (PMID: 10.1042/BCJ2016051028512250)
      Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome—a systematic review. Gastroenterology 157, 97–108 (2019). (PMID: 10.1053/j.gastro.2019.03.04930940523)
      Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018). (PMID: 10.1038/nm.4517296346827043356)
      Baümler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016). (PMID: 10.1038/nature18849273839835114849)
      Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019). (PMID: 10.1038/s41577-019-0125-830718831)
      Groen, R. N., de Clercq, N. C., Nieuwdorp, M., Hoenders, H. J. R. & Groen, A. K. Gut microbiota, metabolism and psychopathology: a critical review and novel perspectives. Crit. Rev. Clin. Lab. Sci. 55, 283–293 (2018). (PMID: 10.1080/10408363.2018.146350729673295)
      Flannigan, K. L. et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J. Hear. Lung Transplant. 37, 1047–1059 (2018). (PMID: 10.1016/j.healun.2018.05.002)
      Esquerre, N. et al. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cmgh 10, 225–244 (2020). (PMID: 322895007301239)
      Behr, C. et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicol. Appl. Pharmacol. 363, 79–87 (2019). (PMID: 10.1016/j.taap.2018.11.01230502395)
      Fröhlich, E. E. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain. Behav. Immun. 56, 140–155 (2016). (PMID: 10.1016/j.bbi.2016.02.020269236305014122)
      Zhang, J. D. et al. Berberine alleviates visceral hypersensitivity in rats by altering gut microbiome and suppressing spinal microglial activation. Acta Pharmacol. Sin. 42, 1821–1833 (2021). (PMID: 10.1038/s41401-020-00601-4335586548563748)
      Kong, C. et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 6, 1–12 (2021).
      Shute, A. et al. Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. Microbiome 9, 1–18 (2021). (PMID: 10.1186/s40168-021-01146-2)
      Ye, J. et al. Metabolomics-guided hypothesis generation for mechanisms of intestinal protection by live biotherapeutic products. Biomolecules 11, 1–29 (2021). (PMID: 10.3390/biom11050738)
      Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 8, 2193–2206 (2014). (PMID: 10.1038/ismej.2014.64247819014992076)
      Rothhammer, V. et al. Type i interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016). (PMID: 10.1038/nm.4106271589064899206)
      Rothhammer, V. et al. Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS. Neurol. Neuroimmunol. NeuroInflammation 4, 1–8 (2017). (PMID: 10.1212/NXI.0000000000000359)
      Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019). (PMID: 10.1038/s41586-019-1443-531330533)
      Hoffman, J. D. et al. Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model. PLoS One 14, 1–22 (2019). (PMID: 10.1371/journal.pone.0221828)
      Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276.e7 (2021). (PMID: 10.1016/j.cmet.2021.10.01034731656)
      Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019). (PMID: 10.1038/s41564-018-0307-330531975)
      Gao, B. et al. Tracking polymicrobial metabolism in cystic fibrosis airways: pseudomonas aeruginosa metabolism and physiology are influenced by Rothia mucilaginosa-derived metabolites. mSphere 3, 1–6 (2018). (PMID: 10.1128/mSphere.00151-18)
      Silveira, C. B. et al. Multi-omics study of keystone species in a cystic fibrosis microbiome. Int. J. Mol. Sci. 22, 1–15 (2021). (PMID: 10.3390/ijms222112050)
      Quinn, R. A. et al. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. MBio 5, 1–13 (2014). (PMID: 10.1128/mBio.00956-13)
      Quinn, R. A. et al. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME J. 9, 1024–1038 (2015). (PMID: 10.1038/ismej.2014.23425514533)
      Henson, M. A., Orazi, G., Phalak, P. & O’Toole, G. A. Metabolic modeling of cystic fibrosis airway communities predicts mechanisms of pathogen dominance. mSystems 4, 1–20 (2019). (PMID: 10.1128/mSystems.00026-19)
      Whiteson, K. L. et al. Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME J. 8, 1247–1258 (2014). (PMID: 10.1038/ismej.2013.229244018604030226)
      Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020). (PMID: 10.1126/science.abc342132792462)
      Morgell, A. et al. Metabolic characterization of plasma and cyst fluid from cystic precursors to pancreatic cancer patients reveal metabolic signatures of bacterial infection. J. Proteome Res. 20, 2725–2738 (2021). (PMID: 10.1021/acs.jproteome.1c0001833720736)
      Paul, B. et al. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PLoS One 12, 1–20 (2017). (PMID: 10.1371/journal.pone.0189756)
      Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22 (2020). (PMID: 10.1016/j.cell.2020.02.016321426797402401)
      Taylor, M. R. et al. Vancomycin relieves mycophenolate mofetil–induced gastrointestinal toxicity by eliminating gut bacterial -glucuronidase activity. Sci. Adv. 5, 1–10 (2019). (PMID: 10.1126/sciadv.aax2358)
      Klünemann, M. et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533–538 (2021). (PMID: 10.1038/s41586-021-03891-834497420)
      Chaikham, P., Apichartsrangkoon, A., Jirarattanarangsri, W. & Wiele, T. Van de Influence of encapsulated probiotics combined with pressurized longan juice on colon microflora and their metabolic activities on the exposure to simulated dynamic gastrointestinal tract. Food Res. Int. 49, 133–142 (2012). (PMID: 10.1016/j.foodres.2012.07.033)
      Püngel, D. et al. Bifidobacterium breve UCC2003 exopolysaccharide modulates the early life microbiota by acting as a potential dietary substrate. Nutrients 12, 1–17 (2020). (PMID: 10.3390/nu12040948)
      Marzorati, M. et al. Treatment with a spore-based probiotic containing five strains of Bacillus induced changes in the metabolic activity and community composition of the gut microbiota in a SHIME® model of the human gastrointestinal system. Food Res. Int. 149, 110676 (2021). (PMID: 10.1016/j.foodres.2021.11067634600678)
      Kitamoto, S. et al. Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nat. Microbiol. 5, 116–125 (2020). (PMID: 10.1038/s41564-019-0591-631686025)
      Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. U.S.A. 113, E7–E15 (2016). (PMID: 26668389)
      Trapecar, M. et al. Gut-liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Syst. 10, 223–239.e9 (2020). (PMID: 10.1016/j.cels.2020.02.008321918738143761)
      McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018). (PMID: 10.1128/mSystems.00031-18297958095954204)
      Melnik, A. V. et al. Coupling targeted and untargeted mass spectrometry for metabolome-microbiome-wide association studies of human fecal samples. Anal. Chem. 89, 7549–7559 (2017). (PMID: 10.1021/acs.analchem.7b0138128628333)
      Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020). (PMID: 10.1038/s41586-020-2047-9321031767252668)
      Han, J., Lin, K., Sequeira, C. & Borchers, C. H. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 854, 86–94 (2015). (PMID: 10.1016/j.aca.2014.11.01525479871)
      Lu, W. et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86, 277–304 (2017). (PMID: 10.1146/annurev-biochem-061516-044952286543235734093)
      Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002). (PMID: 10.1023/A:101371390583311860207)
      Kuehnbaum, N. L. & Britz-Mckibbin, P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem. Rev. 113, 2437–2468 (2013). (PMID: 10.1021/cr300484s23506082)
      Patti, G. J., Yanes, O. & Siuzdak, G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012). (PMID: 10.1038/nrm3314224367493682684)
      Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 5, 1–6 (2014). (PMID: 10.3389/fmicb.2014.00350)
      Hoek, M. J. A. V. & Merks, R. M. H. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst. Biol. 11, 1–18 (2017). (PMID: 10.1186/s12918-017-0430-4)
      Yang, D. D. et al. Fitness and productivity increase with ecotypic diversity among escherichia coli strains that coevolved in a simple, constant environment. Appl. Environ. Microbiol. 86, 1–17 (2020). (PMID: 10.1128/AEM.00051-20)
      Adamowicz, E. M., Flynn, J., Hunter, R. C. & Harcombe, W. R. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 12, 2723–2735 (2018). (PMID: 10.1038/s41396-018-0212-z299917616194032)
      Adamowicz, E. M. & Harcombe, W. R. Weakest-link dynamics predict apparent antibiotic interactions in a model cross-feeding community. Antimicrob. Agents Chemother. 64, 1–13 (2020). (PMID: 10.1128/AAC.00465-20)
      Wyss, M. et al. Using precisely defined in vivo microbiotas to understand microbial regulation of IgE. Front. Immunol. 10, 1–14 (2020). (PMID: 10.3389/fimmu.2019.03107)
      Rydzak, T. et al. Metabolic preference assay for rapid diagnosis of bloodstream infections. Nat. Commun. 13, 1–12 (2022). (PMID: 10.1038/s41467-022-30048-6)
      Rojo, F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658–684 (2010). (PMID: 10.1111/j.1574-6976.2010.00218.x20412307)
      Riquelme, S. A. et al. CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Sci. Transl. Med. 11, 1–27 (2019). (PMID: 10.1126/scitranslmed.aav4634)
      Riquelme, S. A., Wong Fok Lung, T. & Prince, A. Pulmonary pathogens adapt to immune signaling metabolites in the airway. Front. Immunol. 11, 1–14 (2020). (PMID: 10.3389/fimmu.2020.00385)
      Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012). (PMID: 10.1038/nrmicro283222796884)
      Henriques, S. F. et al. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat. Commun. 11, 1–15 (2020). (PMID: 10.1038/s41467-020-18049-9)
      Sakanaka, A., Kuboniwa, M., Takeuchi, H., Hashino, E. & Amano, A. Arginine-ornithine antiporter ArcD controls arginine metabolism and interspecies biofilm development of Streptococcus gordonii. J. Biol. Chem. 290, 21185–21198 (2015). (PMID: 10.1074/jbc.M115.644401260850914571851)
      Huus, K. E. et al. Cross-feeding between intestinal pathobionts promotes their overgrowth during undernutrition. Nat. Commun. 12, 1–14 (2021). (PMID: 10.1038/s41467-021-27191-x)
      Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017). (PMID: 10.1038/nbt.370327893703)
      Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017). (PMID: 10.1016/j.cels.2017.09.002289646985660601)
      Konstantinidis, D. et al. Adaptive laboratory evolution of microbial co‐cultures for improved metabolite secretion. Mol. Syst. Biol. 17, 1–20 (2021). (PMID: 10.15252/msb.202010189)
      Zuñiga, C. et al. Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat. Microbiol. 4, 2184–2191 (2019). (PMID: 10.1038/s41564-019-0567-631591554)
      Heinken, A., Sahoo, S., Fleming, R. M. T. & Thiele, I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40 (2013). (PMID: 10.4161/gmic.22370230227393555882)
      Date, Y. et al. New monitoring approach for metabolic dynamics in microbial ecosystems using stable-isotope-labeling technologies. J. Biosci. Bioeng. 110, 87–93 (2010). (PMID: 10.1016/j.jbiosc.2010.01.00420541122)
      Nakamura, A., Ooga, T. & Matsumoto, M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes 10, 159–171 (2019). (PMID: 10.1080/19490976.2018.149446630183487)
      Deng, P. et al. Untargeted stable isotope probing of the gut microbiota metabolome using 13C-labeled dietary fibers. J. Proteome Res. 20, 2904–2913 (2021). (PMID: 10.1021/acs.jproteome.1c00124338307778784920)
      Uchimura, Y. et al. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49, 545–559.e5 (2018). (PMID: 10.1016/j.immuni.2018.08.004301938486162337)
      Junot, C., Fenaille, F., Colsch, B. & Bécher, F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom. Rev. 33, 471–500 (2014). (PMID: 10.1002/mas.2140124288070)
      Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S. & Marzorati, M. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In Impact Food Bioact. Heal. Vitr. Ex Vivo Model. 305–317 https://doi.org/10.1007/978-3-319-16104-4 (2015).
      Molly, K., Vande Woestyne, M., De Smet, I. & Verstraete, W. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health Dis. 7, 191–200 (1994).
      Barry, J.-L. et al. Estimation of the fermentability of dietary fibre in vitro: a European interlaboratory study. Br. J. Nutr. 74, 303–322 (1995). (PMID: 10.1079/BJN199501377547846)
      Cinquin, C., Le Blay, G., Fliss, I. & Lacroix, C. Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb. Ecol. 48, 128–138 (2004). (PMID: 10.1007/s00248-003-2022-715085302)
      Aura, A. M., Härkönen, H., Fabritius, M. & Poutanen, K. Development of an in vitro enzymic digestion method for removal of starch and protein and assessment of its performance using rye and wheat breads. J. Cereal Sci. 29, 139–152 (1999). (PMID: 10.1006/jcrs.1998.0229)
      Oliphant, K. et al. Effects of antibiotic pretreatment of an ulcerative colitis-derived fecal microbial community on the integration of therapeutic bacteria in vitro. mSystems 5, 1–13 (2020). (PMID: 10.1128/mSystems.00404-19)
      Marzorati, M. et al. High-fiber and high-protein diets shape different gut microbial communities, which ecologically behave similarly under stress conditions, as shown in a gastrointestinal simulator. Mol. Nutr. Food Res. 61, 1–13 (2017). (PMID: 10.1002/mnfr.201600150)
      Selak, M. et al. Inulin-type fructan fermentation by bifidobacteria depends on the strain rather than the species and region in the human intestine. Appl. Microbiol. Biotechnol. 100, 4097–4107 (2016). (PMID: 10.1007/s00253-016-7351-926861055)
      Grootaert, C. et al. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 69, 231–242 (2009). (PMID: 10.1111/j.1574-6941.2009.00712.x19508502)
      Aura, A. M. & Maukonen, J. One compartment fermentation model. In Impact Food Bio-Actives Gut Heal. 281–292 (2015).
      Aura, A. M. et al. Processing of rye bran influences both the fermentation of dietary fibre and the bioconversion of lignans by human faecal flora in vitro. J. Sci. Food Agric. 85, 2085–2093 (2005). (PMID: 10.1002/jsfa.2229)
      Aura, A. M. et al. Suitability of a batch in vitro fermentation model using human faecal microbiota for prediction of conversion of flaxseed lignans to enterolactone with reference to an in vivo rat model. Eur. J. Nutr. 45, 45–51 (2006). (PMID: 10.1007/s00394-005-0561-z15864408)
      Nordlund, E. et al. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J. Agric. Food Chem. 60, 8134–8145 (2012). (PMID: 10.1021/jf300803722731123)
      Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7, 1–15 (2016). (PMID: 10.1038/ncomms11535)
      Wissenbach, D. K. et al. Optimization of metabolomics of defined in vitro gut microbial ecosystems. Int. J. Med. Microbiol. 306, 280–289 (2016). (PMID: 10.1016/j.ijmm.2016.03.00727020116)
      Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cmgh 5, 659–668 (2018). (PMID: 297136745924739)
      May, S., Evans, S. & Parry, L. Organoids, organs-on-chips and other systems, and microbiota. Emerg. Top. Life Sci. 1, 385–400 (2017). (PMID: 10.1042/ETLS20170047335257777289039)
      Park, G. S. et al. Emulating host-microbiome ecosystem of human gastrointestinal tract in vitro. Stem Cell Rev. Rep. 13, 321–334 (2017). (PMID: 10.1007/s12015-017-9739-z28488235)
      Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 7, 1–20 (2019). (PMID: 10.1186/s40168-019-0650-5)
      Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012). (PMID: 10.1039/c2lc40074j22434367)
      Krause, J. L. et al. Following the community development of SIHUMIx–a new intestinal in vitro model for bioreactor use. Gut Microbes 11, 1116–1129 (2020). (PMID: 10.1080/19490976.2019.1702431319186077524388)
      Rohani, L. et al. Stirred suspension bioreactors maintain naïve pluripotency of human pluripotent stem cells. Commun. Biol. 3, 1–22 (2020). (PMID: 10.1038/s42003-020-01218-3)
      Götz, J., Bodea, L. G. & Goedert, M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci. 19, 583–598 (2018). (PMID: 10.1038/s41583-018-0054-830194347)
      Wong, S. K., Chin, K. Y., Suhaimi, F. H., Fairus, A. & Ima-Nirwana, S. Animal models of metabolic syndrome: a review. Nutr. Metab. 13, 1–12 (2016). (PMID: 10.1186/s12986-016-0123-9)
      Kersten, K., Visser, K. E., Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017). (PMID: 10.15252/emmm.20160685728028012)
      Tlaskalova-Hogenova, H. et al. Microbiome and colorectal carcinoma: Insights from germ-free and conventional animal models. Cancer J. 20, 217–224 (2014). (PMID: 10.1097/PPO.000000000000005224855011)
      Park, J. C. & Im, S. H. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med. 52, 1383–1396 (2020). (PMID: 10.1038/s12276-020-0473-2329082118080820)
      Martín, R., Bermúdez-Humarán, L. G. & Langella, P. Gnotobiotic rodents: an in vivo model for the study of microbe-microbe interactions. Front. Microbiol. 7, 1–7 (2016). (PMID: 10.3389/fmicb.2016.00409)
      Weinroth, M. D. et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. J. Anim. Sci. 100, 1–18 (2022). (PMID: 10.1093/jas/skab346)
      Bokoliya, S. C., Dorsett, Y., Panier, H. & Zhou, Y. Procedures for fecal microbiota transplantation in murine microbiome studies. Front. Cell. Infect. Microbiol. 11, 1–14 (2021). (PMID: 10.3389/fcimb.2021.711055)
      Lee, J. et al. Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance. Gut Microbes 12, 1–14 (2020). (PMID: 10.1080/19490976.2020.181410733023370)
      Han, L. W. et al. Key hepatic metabolic pathways are altered in germ-free mice during pregnancy. PLoS One 16, 1–18 (2021).
      Gnainsky, Y. et al. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 34, 108583 (2021). (PMID: 10.1016/j.celrep.2020.10858333406416)
      Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013). (PMID: 10.1053/j.gastro.2013.01.04723380084)
      Xi, M. et al. Microbiome-metabolomic analyses of the impacts of dietary stachyose on fecal microbiota and metabolites in infants intestinal microbiota-associated mice. J. Sci. Food Agric. 101, 3336–3347 (2021). (PMID: 10.1002/jsfa.1096333222240)
      Liao, X. et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine 44, 665–674 (2019). (PMID: 10.1016/j.ebiom.2019.03.057309229646603491)
      Guo, H. et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 370, 1–11 (2020). (PMID: 10.1126/science.aay9097)
      Lim, J. J. et al. Gut microbiome critically impacts PCB-induced changes in metabolic fingerprints and the hepatic transcriptome in mice. Toxicol. Sci. 177, 168–187 (2020). (PMID: 10.1093/toxsci/kfaa090325442457553702)
      Li, C. Y. et al. Novel interactions between gut microbiome and host drug-processing genes modify the hepatic metabolism of the environmental chemicals polybrominated diphenyl ethers. Drug Metab. Dispos. 45, 1197–1214 (2017). (PMID: 10.1124/dmd.117.077024288647485649562)
      Li, C. Y. et al. PBDEs altered gut microbiome and bile acid homeostasis in male C57BL/6 mice. Drug Metab. Dispos. 46, 1226–1240 (2018). (PMID: 10.1124/dmd.118.081547297692686053593)
      Nagao-Kitamoto, H. et al. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat. Med. 26, 608–617 (2020). (PMID: 10.1038/s41591-020-0764-0320669757160049)
      Bogatyrev, S. R., Rolando, J. C. & Ismagilov, R. F. Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome 8, 1–22 (2020). (PMID: 10.1186/s40168-020-0785-4)
      Oh, J. H. & Rehermann, B. Natural versus laboratory world: incorporating wild-derived microbiota into preclinical rodent models. J. Immunol. 207, 1703–1709 (2021). (PMID: 10.4049/jimmunol.210042634544812)
      Zubeldia-Varela, E., Barber, D., Barbas, C., Perez-Gordo, M. & Rojo, D. Sample pre-treatment procedures for the omics analysis of human gut microbiota: turning points, tips and tricks for gene sequencing and metabolomics. J. Pharm. Biomed. Anal. 191, 113592 (2020). (PMID: 10.1016/j.jpba.2020.11359232947167)
      Matysik, S., Le Roy, C. I., Liebisch, G. & Claus, S. P. Metabolomics of fecal samples: a practical consideration. Trends Food Sci. Technol. 57, 244–255 (2016). (PMID: 10.1016/j.tifs.2016.05.011)
      Deda, O., Gika, H. G., Wilson, I. D. & Theodoridis, G. A. An overview of fecal sample preparation for global metabolic profiling. J. Pharm. Biomed. Anal. 113, 137–150 (2015). (PMID: 10.1016/j.jpba.2015.02.00625812436)
      Gratton, J. et al. Optimized sample handling strategy for metabolic profiling of human feces. Anal. Chem. 88, 4661–4668 (2016). (PMID: 10.1021/acs.analchem.5b0415927065191)
      Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021). (PMID: 10.1038/s41592-021-01197-1342391028592384)
      Claus, S. P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4, 1–14 (2008). (PMID: 10.1038/msb.2008.56)
      Li, X. et al. A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 6, (2011).
      Lai, Y., Liu, C. W., Chi, L., Ru, H. & Lu, K. High-resolution metabolomics of 50 neurotransmitters and tryptophan metabolites in feces, serum, and brain tissues using UHPLC-ESI-Q exactive mass spectrometry. ACS Omega 6, 8094–8103 (2021). (PMID: 10.1021/acsomega.0c05789338174688014936)
      Wu, W. et al. Bioregional alterations in gut microbiome contribute to the plasma metabolomic changes in pigs fed with inulin. Microorganisms 8, 1–17 (2020). (PMID: 10.3390/microorganisms8010111)
      Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. U.S.A. 106, 3698–3703 (2009). (PMID: 10.1073/pnas.0812874106192341102656143)
      Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020). (PMID: 10.1038/s41422-020-0332-7324335957264227)
      González-Domínguez, R., González-Domínguez, Á., Sayago, A. & Fernández-Recamales, Á. Recommendations and best practices for standardizing the pre-analytical processing of blood and urine samples in metabolomics. Metabolites 10, 1–18 (2020). (PMID: 10.3390/metabo10060229)
      Diallo, A. F. et al. Metabolic profiling of blood and urine for exploring the functional role of the microbiota in human health. Biol. Res. Nurs. 22, 449–457 (2020). (PMID: 10.1177/1099800420941080327230877874358)
      Lewis, I. A., Shortreed, M. R., Hegeman, A. D. & Markley, J. L. Novel NMR and MS approaches to metabolomics. In Handbook of Metabolomics (Fan, T. W.-M., Lane, A. N. & Higashi, R. M.) 199–230 (Humana Press, Totowa, NJ, 2012). https://doi.org/10.1007/978-1-61779-618-0_7.
      Voigt, A. L. et al. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J. 35, 1–22 (2021). (PMID: 10.1096/fj.202002799R)
      Giommi, C., Ladisa, C., Carnevali, O., Maradonna, F. & Habibi, H. R. Metabolomic and transcript analysis revealed a sex-specific effect of glyphosate in zebrafish liver. Int. J. Mol. Sci. 23, 1–16 (2022). (PMID: 10.3390/ijms23052724)
      Lau, A. et al. Dipeptidase-1 governs renal inflammation during ischemia reperfusion injury. Sci. Adv. 8, 1–10 (2022). (PMID: 10.1126/sciadv.abm0142)
      Vicentini, F. A. et al. Colitis-associated microbiota drives changes in behaviour in male mice in the absence of inflammation. Brain. Behav. Immun. 102, 266–278 (2022). (PMID: 10.1016/j.bbi.2022.03.00135259427)
      van Tilburg Bernardes, E. et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 11, 1–16 (2020). (PMID: 10.1038/s41467-020-16431-1)
      Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 3421, eabc3421 (2020).
      Riquelme, S. A. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 31, 1091–1106 (2021). (PMID: 10.1016/j.cmet.2020.04.017)
      Wong Fok Lung, T. et al. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab. 1–14 https://doi.org/10.1016/j.cmet.2022.03.009 (2022).
      Michi, A. N., Yipp, B. G., Dufour, A., Lopes, F. & Proud, D. PGC-1α mediates a metabolic host defense response in human airway epithelium during rhinovirus infections. Nat. Commun. 12, 1–19 (2021). (PMID: 10.1038/s41467-021-23925-z)
      Groves, R. A. et al. Methods for quantifying the metabolic boundary fluxes of cell cultures in large cohorts by high-resolution hydrophilic liquid chromatography mass spectrometry. Anal. Chem. 94, 8874–8882 (2022). (PMID: 10.1021/acs.analchem.2c00078357002719244871)
      Fiori, J., Turroni, S., Candela, M. & Gotti, R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J. Pharm. Biomed. Anal. 177, 112867 (2020). (PMID: 10.1016/j.jpba.2019.11286731614303)
      Bihan, D. et al. Method for absolute quantification of short chain fatty acids via reverse phase chromatography mass spectrometry. PLoS One 17, 1–14 (2022). (PMID: 10.1371/journal.pone.0267093)
      Wu, J. et al. NMR-based metabolite profiling of human milk: a pilot study of methods for investigating compositional changes during lactation. Biochem. Biophys. Res. Commun. 469, 626–632 (2016). (PMID: 10.1016/j.bbrc.2015.11.11426655810)
      Prentice, P. M. et al. Human milk short-chain fatty acid composition is associated with adiposity outcomes in infants. J. Nutr. 149, 716–722 (2019). (PMID: 10.1093/jn/nxy32031050748)
      Loke, M. F. et al. Metabolomics and 16S rRNA sequencing of human colorectal cancers and adjacent mucosa. PLoS One 13, 1–20 (2018). (PMID: 10.1371/journal.pone.0208584)
      Shalon, D. et al. Profiling of the human intestinal microbiome and bile acids under 2 physiologic conditions using an ingestible sampling device. bioRxiv 1–42 (2022).
      Rezaei Nejad, H. et al. Ingestible osmotic pill for in vivo sampling of gut microbiomes. Adv. Intell. Syst. 1, 1900053 (2019). (PMID: 10.1002/aisy.201900053)
      Pinu, F. R., Villas-Boas, S. G. & Aggio, R. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites 7, 1–20 (2017). (PMID: 10.3390/metabo7040053)
      McGrath, L. T., Weir, C. D., Maynard, S. & Rowlands, B. J. Gas-liquid chromatographic analysis of volatile short chain fatty acids in fecal samples as pentafluorobenzyl esters. Anal. Biochem. 207, 227–230 (1992). (PMID: 10.1016/0003-2697(92)90004-Q1481974)
      Zhao, G., Nyman, M. & Jönsson, J. Å. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr. 20, 674–682 (2006). (PMID: 10.1002/bmc.58016206138)
      You, J. S. et al. Commensal-derived metabolites govern Vibrio cholerae pathogenesis in host intestine. Microbiome 7, 1–18 (2019). (PMID: 10.1186/s40168-019-0746-y)
      Ratajczak, W. et al. Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs). Acta Biochim. Pol. 66, 1–12 (2019). (PMID: 30831575)
      Lewis, I. A. et al. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal. Chem. 79, 9385–9390 (2007). (PMID: 10.1021/ac071583z179859272533272)
      He, L. et al. Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1092, 359–367 (2018). (PMID: 10.1016/j.jchromb.2018.06.028)
      Chen, I. & Cassaro, S. Physiology, bile acids. In NCBI Bookshelf 1–6 (2022).
      Shi, H. et al. Restructuring the gut microbiota by intermittent fasting lowers blood pressure. Circ. Res. 128, 1240–1254 (2021). (PMID: 10.1161/CIRCRESAHA.120.318155335966698085162)
      Duboc, H., Tache, Y. & Hofmann, A. F. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig. Liver Dis. 46, 302–312 (2014). (PMID: 10.1016/j.dld.2013.10.021244114855953190)
      Ridlon, J. M. et al. The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes 11, 381–404 (2020). (PMID: 10.1080/19490976.2019.161817331177942)
      Mao, J. H. et al. Genetic and metabolic links between the murine microbiome and memory. Microbiome 8, 1–14 (2020).
      Kong, C. et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 6, 1–12 (2021).
      Koistinen, V. M. et al. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome 7, 1–14 (2019). (PMID: 10.1186/s40168-019-0718-2)
      Moriya, T., Satomi, Y., Murata, S., Sawada, H. & Kobayashi, H. Effect of gut microbiota on host whole metabolome. Metabolomics 13, 1–12 (2017). (PMID: 10.1007/s11306-017-1240-9)
      Bajad, S. U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 1125, 76–88 (2006). (PMID: 10.1016/j.chroma.2006.05.01916759663)
      Buszewski, B. & Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem. 402, 231–247 (2012). (PMID: 10.1007/s00216-011-5308-521879300)
      Cubbon, S., Antonio, C., Wilson, J. & Thomas-Oates, J. Metabolomic applications of HILIC-LC-MS. Mass Spectrom. Rev. 29, 671–684 (2010). (PMID: 10.1002/mas.2025219557839)
      Bar-Even, A., Flamholz, A., Noor, E. & Milo, R. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8, 509–517 (2012). (PMID: 10.1038/nchembio.97122596202)
      Ivanisevic, J. et al. Toward’Omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal. Chem. 85, 6876–6884 (2013). (PMID: 10.1021/ac401140h237818733761963)
      Lu, W., Bennett, B. D. & Rabinowitz, J. D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 871, 236–242 (2008). (PMID: 10.1016/j.jchromb.2008.04.031)
      Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal. Chem. 82, 3212–3221 (2010). (PMID: 10.1021/ac902837x203499932863137)
      Yu, H. & Huan, T. MAFFIN: metabolomics sample normalization using maximal density fold change with high-quality metabolic features and corrected signal intensities. Bioinformatics 38, 3429–3437 (2022). (PMID: 10.1093/bioinformatics/btac35535639662)
      Yu, H. & Huan, T. Patterned signal ratio biases in mass spectrometry-based quantitative metabolomics. Anal. Chem. 93, 2254–2262 (2021). (PMID: 10.1021/acs.analchem.0c0411333400486)
      Torgrip, R. J. O., Åberg, K. M., Alm, E., Schuppe-Koistinen, I. & Lindberg, J. A note on normalization of biofluid 1D 1H-NMR data. Metabolomics 4, 114–121 (2008). (PMID: 10.1007/s11306-007-0102-2)
      Wu, Y. & Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A 1430, 80–95 (2016). (PMID: 10.1016/j.chroma.2015.12.00726763302)
      Reisetter, A. C. et al. Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data. BMC Bioinforma. 18, 1–17 (2017). (PMID: 10.1186/s12859-017-1501-7)
      Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K. & Lindon, J. C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem. 78, 2262–2267 (2006). (PMID: 10.1021/ac051931216579606)
      Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006). (PMID: 10.1021/ac051632c16808434)
      Veselkov, K. A. et al. Profiles for improved information recovery. Anal. Chem. 83, 5864–5872 (2011). (PMID: 10.1021/ac201065j21526840)
      Chen, M. X., Wang, S. Y., Kuo, C. H. & Tsai, I. L. Metabolome analysis for investigating host-gut microbiota interactions. J. Formos. Med. Assoc. 118, S10–S22 (2019). (PMID: 10.1016/j.jfma.2018.09.00730269936)
      Misra, B. B. New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics 17, 1–24 (2021). (PMID: 10.1007/s11306-021-01796-1)
      Misra, B. B. & van der Hooft, J. J. J. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 37, 86–110 (2016). (PMID: 10.1002/elps.20150041726464019)
      O’Sullivan, V., Madrid-Gambin, F., Alegra, T., Gibbons, H. & Brennan, L. Impact of sample storage on the NMR fecal water metabolome. ACS Omega 3, 16585–16590 (2018). (PMID: 10.1021/acsomega.8b01761306138076312648)
      Vanden Bussche, J., Marzorati, M., Laukens, D. & Vanhaecke, L. Validated high resolution mass spectrometry-based approach for metabolomic fingerprinting of the human gut phenotype. Anal. Chem. 87, 10927–10934 (2015). (PMID: 10.1021/acs.analchem.5b0268826451617)
      Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. del. R. Ist. Super. di Sci. Econ. e Commericiali di Firenze 8, 3–62 (1936).
      Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970). (PMID: 10.1080/00401706.1970.10488634)
      Li, W. Application of volcano plots in analyses of mRNA differential expressions with microarrays. J. Bioinform. Comput. Biol. 10, 1–30 (2012). (PMID: 10.1142/S0219720012310038)
      Jacob, D. CATE Meets ML - Conditional Average Treatment Effect and Machine Learning. arXiv 1–67 https://doi.org/10.2139/ssrn.3816558 (2021).
      Louizos, C. et al. Causal effect inference with deep latent-variable models. arXiv 1–12 (2017).
      Torrey, L. & Shavlik, J. Transfer learning. In: Handbook of Research on Machine Learning Applications 1–22 https://doi.org/10.1201/b17320 (2009).
      Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001). (PMID: 10.1214/aos/1013203451)
      Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). (PMID: 10.1023/A:1010933404324)
      VanderWeele, T. J. Mediation analysis: a practitioner’s guide. Annu. Rev. Public Health 37, 17–32 (2016). (PMID: 10.1146/annurev-publhealth-032315-02140226653405)
      Caron, A., Baio, G. & Manolopoulou, I. Estimating individual treatment effects using non‐parametric regression models: a review. J. R. Stat. Soc. Ser. A (Statistics Soc. 1–35 https://doi.org/10.1111/rssa.12824 (2022).
      McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv 1–63 http://arxiv.org/abs/1802.03426 (2020).
      Farbmacher, H., Huber, M., Lafférs, L., Langen, H. & Spindler, M. Causal mediation analysis with double machine learning. Econom. J. 00, 1–24 (2022).
      Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 31st Conference on Neural Information Processing Systems 1–10 https://doi.org/10.1016/j.ophtha.2018.11.016 (2017).
      Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. (MIT Press, 2016).at http://www.deeplearningbook.org.
      Pomyen, Y. et al. Deep metabolome: applications of deep learning in metabolomics. Comput. Struct. Biotechnol. J. 18, 2818–2825 (2020). (PMID: 10.1016/j.csbj.2020.09.033331334237575644)
      Lee, H., Herbert, R. D. & McAuley, J. H. Mediation analysis. JAMA 321, 697–698 (2019). (PMID: 10.1001/jama.2018.2197330681700)
      Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986). (PMID: 10.1037/0022-3514.51.6.11733806354)
      Menni, C. et al. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med. 19, 1–10 (2021). (PMID: 10.1186/s12916-021-01913-w)
      Wang, D. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814.e5 (2021). (PMID: 10.1016/j.chom.2021.11.00334847370)
      Brandao Gois, M. et al. Role of the gut microbiome in mediating lactose intolerance symptoms. Gut 71, 214–215 (2022). (PMID: 10.1136/gutjnl-2020-323911)
      Hayes, A. F. & Preacher, K. J. Quantifying and testing indirect effects in simple mediation models when the constituent paths are nonlinear. Multivar. Behav. Res. 45, 627–660 (2010). (PMID: 10.1080/00273171.2010.498290)
      Tun, H. M. et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172, 368–377 (2018). (PMID: 10.1001/jamapediatrics.2017.5535294599425875322)
      Tun, M. H. et al. Postnatal exposure to household disinfectants, infant gut microbiota and subsequent risk of overweight in children. CMAJ 190, E1097–E1107 (2018). (PMID: 10.1503/cmaj.170809302244426141245)
      Van Nimwegen, F. A. et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol. 128, 948–955.e3 (2011). (PMID: 10.1016/j.jaci.2011.07.02721872915)
      Mirpuri, J. et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5, 28–39 (2013). (PMID: 10.4161/gmic.26489246378074049932)
      Morita, N. et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1 + cells by bacterial metabolites. Nature 566, 110–114 (2019). (PMID: 10.1038/s41586-019-0884-130675063)
      Battersby, A. J. & Gibbons, D. L. The gut mucosal immune system in the neonatal period. Pediatr. Allergy Immunol. 24, 414–421 (2013). (PMID: 10.1111/pai.1207923682966)
      Kawano, A. & Emori, Y. Changes in maternal secretory immunoglobulin a levels in human milk during 12 weeks after parturition. Am. J. Hum. Biol. 25, 399–403 (2013). (PMID: 10.1002/ajhb.2238723559469)
      Knafl, G. J. et al. Incorporating nonlinearity into mediation analyses. BMC Med. Res. Methodol. 17, 1–21 (2017). (PMID: 10.1186/s12874-017-0296-6)
      Hezaveh, K. et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 55, 324–340.e8 (2022). (PMID: 10.1016/j.immuni.2022.01.00635139353)
      Belcheva, A. et al. Gut microbial metabolism drives transformation of msh2-deficient colon epithelial cells. Cell 158, 288–299 (2014). (PMID: 10.1016/j.cell.2014.04.05125036629)
    • Grant Information:
      IMC-161484 Canada CIHR; R01 AI153521 United States AI NIAID NIH HHS
    • Publication Date:
      Date Created: 20220815 Date Completed: 20221130 Latest Revision: 20230203
    • Publication Date:
      20240104
    • Accession Number:
      10.1038/s41385-022-00553-4
    • Accession Number:
      35970917