Perception-action integration during inhibitory control is reflected in a concomitant multi-region processing of specific codes in the neurophysiological signal.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      The integration of perception and action has long been studied in psychological science using overarching cognitive frameworks. Despite these being very successful in explaining perception-action integration, little is known about its neurophysiological and especially the functional neuroanatomical foundations. It is unknown whether distinct brain structures are simultaneously involved in the processing of perception-action integration codes and also to what extent demands on perception-action integration modulate activities in these structures. We investigate these questions in an EEG study integrating temporal and ICA-based EEG signal decomposition with source localization. For this purpose, we used data from 32 healthy participants who performed a 'TEC Go/Nogo' task. We show that the EEG signal can be decomposed into components carrying different informational aspects or processing codes relevant for perception-action integration. Importantly, these specific codes are processed independently in different brain structures, and their specific roles during the processing of perception-action integration differ. Some regions (i.e., the anterior cingulate and insular cortex) take a 'default role' because these are not modulated in their activity by demands or the complexity of event file coding processes. In contrast, regions in the motor cortex, middle frontal, temporal, and superior parietal cortices were not activated by 'default' but revealed modulations depending on the complexity of perception-action integration (i.e., whether an event file has to be reconfigured). Perception-action integration thus reflects a multi-region processing of specific fractions of information in the neurophysiological signal. This needs to be taken into account when further developing a cognitive science framework detailing perception-action integration.
      (© 2022 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
    • References:
      Achenbach, T. M., & Rescorla, L. (2003). Manual for the ASEBA adult forms & profiles. University of Vermont, Research Center for Children, Youth, & Families.
      Artoni, F., Gemignani, A., Sebastiani, L., Bedini, R., Landi, A., & Menicucci, D. (2012). ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 368-371). IEEE. https://doi.org/10.1109/EMBC.2012.6345945.
      Awan, F. G., Saleem, O., & Kiran, A. (2019). Recent trends and advances in solving the inverse problem for EEG source localization. Inverse Problems in Science and Engineering, 27(11), 1521-1536. https://doi.org/10.1080/17415977.2018.1490279.
      Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79. https://doi.org/10.1016/j.pneurobio.2013.06.005.
      Barry, R. J., & De Blasio, F. M. (2018). EEG frequency PCA in EEG-ERP dynamics. Psychophysiology, 55(5), e13042. https://doi.org/10.1111/psyp.13042.
      Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289-300.
      Bensmann, W., Zink, N., Werner, A., Beste, C., & Stock, A.-K. (2020). Acute alcohol effects on response inhibition depend on response automatization, but not on GABA or glutamate levels in the ACC and striatum. Journal of Clinical Medicine, 9(2), E481. https://doi.org/10.3390/jcm9020481.
      Bernier, P.-M., Cieslak, M., & Grafton, S. T. (2012). Effector selection precedes reach planning in the dorsal parietofrontal cortex. Journal of Neurophysiology, 108(1), 57-68. https://doi.org/10.1152/jn.00011.2012.
      Beste, C. (2021). Disconnected psychology and neuroscience-implications for scientific progress, replicability and the role of publishing. Communications Biology, 4(1), 1099. https://doi.org/10.1038/s42003-021-02634-9.
      Bodmer, B., Mückschel, M., Roessner, V., & Beste, C. (2018). Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Structure & Function, 223(4), 1797-1810. https://doi.org/10.1007/s00429-017-1589-6.
      Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 112(12), 2224-2232. https://doi.org/10.1016/S1388-2457(01)00691-5.
      Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356-366. https://doi.org/10.3758/CABN.7.4.356.
      Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: Charted territory and new frontiers. Cognitive Science, 38(6), 1249-1285. https://doi.org/10.1111/cogs.12126.
      Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.), 304(5679), 1926-1929. https://doi.org/10.1126/science.1099745.
      Cauda, F., Costa, T., Torta, D. M. E., Sacco, K., D'Agata, F., Duca, S., Geminiani, G., Fox, P. T., & Vercelli, A. (2012). Meta-analytic clustering of the insular cortex. NeuroImage, 62(1), 343-355. https://doi.org/10.1016/j.neuroimage.2012.04.012.
      Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421. https://doi.org/10.1016/j.tics.2014.04.012.
      Chao, L. L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11(1), 25-35. https://doi.org/10.1162/089892999563229.
      Chmielewski, W. X., & Beste, C. (2019). Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes. NeuroImage, 196, 227-236. https://doi.org/10.1016/j.neuroimage.2019.04.035.
      Chmielewski, W. X., Mückschel, M., & Beste, C. (2018). Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition. Human Brain Mapping, 39(4), 1839-1849. https://doi.org/10.1002/hbm.23974.
      Cisek, P., & Kalaska, J. F. (2002). Modest gaze-related discharge modulation in monkey dorsal premotor cortex during a reaching task performed with free fixation. Journal of Neurophysiology, 88(2), 1064-1072. https://doi.org/10.1152/jn.00995.2001.
      Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45(5), 801-814. https://doi.org/10.1016/j.neuron.2005.01.027.
      Colzato, L. S., Warrens, M. J., & Hommel, B. (2006). Priming and binding in and across perception and action: A correlational analysis of the internal structure of event files. Quarterly Journal of Experimental Psychology (2006), 59(10), 1785-1804. https://doi.org/10.1080/17470210500438304.
      Dien, J. (2010). Evaluating two-step PCA of ERP data with Geomin, infomax, Oblimin, Promax, and varimax rotations. Psychophysiology, 47(1), 170-183. https://doi.org/10.1111/j.1469-8986.2009.00885.x.
      Dien, J., Spencer, K. M., & Donchin, E. (2003). Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Research, 17(3), 637-650. https://doi.org/10.1016/S0926-6410(03)00188-5.
      Dilcher, R., Jamous, R., Takacs, A., Tóth-Fáber, E., Münchau, A., Li, S.-C., & Beste, C. (2021). Neurophysiology of embedded response plans: Age effects in action execution but not in feature integration from preadolescence to adulthood. Journal of Neurophysiology, 125(4), 1382-1395. https://doi.org/10.1152/jn.00681.2020.
      Dippel, G., Chmielewski, W., Mückschel, M., & Beste, C. (2016). Response mode-dependent differences in neurofunctional networks during response inhibition: An EEG-beamforming study. Brain Structure & Function, 221(8), 4091-4101. https://doi.org/10.1007/s00429-015-1148-y.
      Droutman, V., Bechara, A., & Read, S. J. (2015). Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Frontiers in Behavioral Neuroscience, 9, 309. https://doi.org/10.3389/fnbeh.2015.00309.
      Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-179. https://doi.org/10.1016/j.tics.2010.01.004.
      Eichele, T., Rachakonda, S., Brakedal, B., Eikeland, R., & Calhoun, V. D. (2011). EEGIFT: Group independent component analysis for event-related EEG data. Computational Intelligence and Neuroscience, 2011, 1-9. https://doi.org/10.1155/2011/129365.
      Fokin, V. A., Shelepin, Y. E., Kharauzov, A. K., Trufanov, G. E., Sevost'yanov, A. V., Pronin, S. V., & Koskin, S. A. (2008). Localization of human cortical areas activated on perception of ordered and chaotic images. Neuroscience and Behavioral Physiology, 38(7), 677-685. https://doi.org/10.1007/s11055-008-9033-2.
      Friedrich, J., & Beste, C. (2020). Passive perceptual learning modulates motor inhibitory control in superior frontal regions. Human Brain Mapping, 41(3), 726-738. https://doi.org/10.1002/hbm.24835.
      Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., & Philipp, A. (2020). Binding and retrieval in action control (BRAC). Trends in Cognitive Sciences, 24(5), 375-387. https://doi.org/10.1016/j.tics.2020.02.004.
      Fuchs, M., Kastner, J., Wagner, M., Hawes, S., & Ebersole, J. S. (2002). A standardized boundary element method volume conductor model. Clinical Neurophysiology, 113(5), 702-712. https://doi.org/10.1016/S1388-2457(02)00030-5.
      Geng, J. J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: Contextual updating? Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2608-2620. https://doi.org/10.1016/j.neubiorev.2013.08.010.
      Gogolla, N. (2017). The insular cortex. Current Biology: CB, 27(12), R580-R586. https://doi.org/10.1016/j.cub.2017.05.010.
      Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-2236(92)90344-8.
      Goodale, M. A., Króliczak, G., & Westwood, D. A. (2005). Dual routes to action: Contributions of the dorsal and ventral streams to adaptive behavior. Progress in Brain Research, 149, 269-283. https://doi.org/10.1016/S0079-6123(05)49019-6.
      Gottlieb, J. (2007). From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron, 53(1), 9-16. https://doi.org/10.1016/j.neuron.2006.12.009.
      Gottlieb, J., & Snyder, L. H. (2010). Spatial and non-spatial functions of the parietal cortex. Current Opinion in Neurobiology, 20(6), 731-740. https://doi.org/10.1016/j.conb.2010.09.015.
      Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5(1), 25. https://doi.org/10.1186/1743-0003-5-25.
      Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859-862. https://doi.org/10.1038/nature02966.
      Heekeren, H. R., Marrett, S., Ruff, D. A., Bandettini, P. A., & Ungerleider, L. G. (2006). Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proceedings of the National Academy of Sciences, 103(26), 10023-10028. https://doi.org/10.1073/pnas.0603949103.
      Himberg, J., & Hyvarinen, A. (2003). Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. In 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (pp. 259-268). IEEE. https://doi.org/10.1109/NNSP.2003.1318025.
      Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22(3), 1214-1222. https://doi.org/10.1016/j.neuroimage.2004.03.027.
      Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849-878 discussion 878-937.
      Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494-500. https://doi.org/10.1016/j.tics.2004.08.007.
      Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512-526. https://doi.org/10.1007/s00426-009-0234-2.
      Huster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M., & Herrmann, C. S. (2013). Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 87(3), 217-233. https://doi.org/10.1016/j.ijpsycho.2012.08.001.
      Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483-1492.
      Jaffard, M., Longcamp, M., Velay, J.-L., Anton, J.-L., Roth, M., Nazarian, B., & Boulinguez, P. (2008). Proactive inhibitory control of movement assessed by event-related fMRI. NeuroImage, 42(3), 1196-1206. https://doi.org/10.1016/j.neuroimage.2008.05.041.
      Kayser, J., & Tenke, C. E. (2006). Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates. Clinical Neurophysiology, 117(2), 369-380. https://doi.org/10.1016/j.clinph.2005.08.033.
      Keizer, A. W., Verment, R. S., & Hommel, B. (2010). Enhancing cognitive control through neurofeedback: A role of gamma-band activity in managing episodic retrieval. NeuroImage, 49(4), 3404-3413. https://doi.org/10.1016/j.neuroimage.2009.11.023.
      Kikumoto, A., & Mayr, U. (2020). Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10603-10608. https://doi.org/10.1073/pnas.1922166117.
      Knudsen, E. I. (2007). Fundamental components of attention. Annual Review of Neuroscience, 30, 57-78. https://doi.org/10.1146/annurev.neuro.30.051606.094256.
      Kühn, S., Keizer, A. W., Colzato, L. S., Rombouts, S. A. R. B., & Hommel, B. (2011). The neural underpinnings of event-file management: Evidence for stimulus-induced activation of and competition among stimulus-response bindings. Journal of Cognitive Neuroscience, 23(4), 896-904. https://doi.org/10.1162/jocn.2010.21485.
      Levine, E., & Domany, E. (2001). Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13(11), 2573-2593. https://doi.org/10.1162/089976601753196030.
      Marco-Pallarés, J., Grau, C., & Ruffini, G. (2005). Combined ICA-LORETA analysis of mismatch negativity. NeuroImage, 25(2), 471-477. https://doi.org/10.1016/j.neuroimage.2004.11.028.
      Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., … Mazoyer, B. (2001). A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1412), 1293-1322. https://doi.org/10.1098/rstb.2001.0915.
      Messel, M. S., Raud, L., Hoff, P. K., Stubberud, J., & Huster, R. J. (2021). Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition. NeuroImage, 241, 118400. https://doi.org/10.1016/j.neuroimage.2021.118400.
      Mobascher, A., Brinkmeyer, J., Warbrick, T., Musso, F., Wittsack, H. J., Stoermer, R., Saleh, A., Schnitzler, A., & Winterer, G. (2009). Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli-A fMRI/EEG study. NeuroImage, 44(3), 1081-1092. https://doi.org/10.1016/j.neuroimage.2008.09.004.
      Ocklenburg, S., Güntürkün, O., & Beste, C. (2011). Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage, 55(4), 1771-1778. https://doi.org/10.1016/j.neuroimage.2011.01.035.
      Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., & Hegerl, U. (2009). EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage, 45(2), 319-332. https://doi.org/10.1016/j.neuroimage.2008.11.014.
      Opitz, A., Beste, C., & Stock, A.-K. (2020). Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding. NeuroImage, 209, 116524. https://doi.org/10.1016/j.neuroimage.2020.116524.
      Ouyang, G., Hildebrandt, A., Sommer, W., & Zhou, C. (2017). Exploiting the intra-subject latency variability from single-trial event-related potentials in the P3 time range: A review and comparative evaluation of methods. Neuroscience and Biobehavioral Reviews, 75, 1-21. https://doi.org/10.1016/j.neubiorev.2017.01.023.
      Ouyang, G., Schacht, A., Zhou, C., & Sommer, W. (2013). Overcoming limitations of the ERP method with residue iteration decomposition (RIDE): A demonstration in go/no-go experiments. Psychophysiology, 50(3), 253-265. https://doi.org/10.1111/psyp.12004.
      Ouyang, G., Sommer, W., & Zhou, C. (2015). A toolbox for residue iteration decomposition (RIDE)-A method for the decomposition, reconstruction, and single trial analysis of event related potentials. Journal of Neuroscience Methods, 250, 7-21. https://doi.org/10.1016/j.jneumeth.2014.10.009.
      Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl D, 5-12.
      Pastötter, B., Moeller, B., & Frings, C. (2021). Watching the brain as it (un)binds: Beta synchronization relates to distractor-response binding. Journal of Cognitive Neuroscience, 33(8), 1581-1594. https://doi.org/10.1162/jocn_a_01730.
      Petruo, V., Takacs, A., Mückschel, M., Hommel, B., & Beste, C. (2021). Multi-level decoding of task sets in neurophysiological data during cognitive flexibility. IScience, 24(12), 103502. https://doi.org/10.1016/j.isci.2021.103502.
      Petruo, V. A., Stock, A.-K., Münchau, A., & Beste, C. (2016). A systems neurophysiology approach to voluntary event coding. NeuroImage, 135, 324-332. https://doi.org/10.1016/j.neuroimage.2016.05.007.
      Philiastides, M. G., & Sajda, P. (2007). EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. Journal of Neuroscience, 27(48), 13082-13091. https://doi.org/10.1523/JNEUROSCI.3540-07.2007.
      Prochnow, A., Bluschke, A., Weissbach, A., Münchau, A., Roessner, V., Mückschel, M., & Beste, C. (2021). Neural dynamics of stimulus-response representations during inhibitory control. Journal of Neurophysiology, 126(2), 680-692. https://doi.org/10.1152/jn.00163.2021.
      Prochnow, A., Eggert, E., Münchau, A., Mückschel, M., & Beste, C. (2022). Alpha and theta bands dynamics serve distinct functions during perception-action integration in response inhibition. Journal of Cognitive Neuroscience, 34(6), 1053-1069. https://doi.org/10.1162/jocn_a_01844.
      Ruff, D. A., Marrett, S., Heekeren, H. R., Bandettini, P. A., & Ungerleider, L. G. (2010). Complementary roles of systems representing sensory evidence and systems detecting task difficulty during perceptual decision making. Frontiers in Neuroscience, 4, 190. https://doi.org/10.3389/fnins.2010.00190.
      Sekihara, K., Sahani, M., & Nagarajan, S. S. (2005). Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage, 25(4), 1056-1067. https://doi.org/10.1016/j.neuroimage.2004.11.051.
      Sulpizio, V., Lucci, G., Berchicci, M., Galati, G., Pitzalis, S., & Di Russo, F. (2017). Hemispheric asymmetries in the transition from action preparation to execution. NeuroImage, 148, 390-402. https://doi.org/10.1016/j.neuroimage.2017.01.009.
      Takacs, A., Mückschel, M., Roessner, V., & Beste, C. (2020). Decoding stimulus-response representations and their stability using EEG-based multivariate pattern analysis. Cerebral Cortex Communications, 1(1), tgaa016. https://doi.org/10.1093/texcom/tgaa016.
      Takacs, A., Stock, A.-K., Kuntke, P., Werner, A., & Beste, C. (2021). On the functional role of striatal and anterior cingulate GABA+ in stimulus-response binding. Human Brain Mapping, 42(6), 1863-1878. https://doi.org/10.1002/hbm.25335.
      Takacs, A., Zink, N., Wolff, N., Münchau, A., Mückschel, M., & Beste, C. (2020). Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Human Brain Mapping, 41(10), 2862-2877. https://doi.org/10.1002/hbm.24983.
      Takeichi, H., Koyama, S., Terao, A., Takeuchi, F., Toyosawa, Y., & Murohashi, H. (2010). Comprehension of degraded speech sounds with m-sequence modulation: An fMRI study. NeuroImage, 49(3), 2697-2706. https://doi.org/10.1016/j.neuroimage.2009.10.063.
      Vahid, A., Mückschel, M., Stober, S., Stock, A.-K., & Beste, C. (2022). Conditional generative adversarial networks applied to EEG data can inform about the inter-relation of antagonistic behaviors on a neural level. Communications Biology, 5(1), 148. https://doi.org/10.1038/s42003-022-03091-8.
      Verleger, R., Metzner, M. F., Ouyang, G., Śmigasiewicz, K., & Zhou, C. (2014). Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage, 100, 271-280. https://doi.org/10.1016/j.neuroimage.2014.06.036.
      Viola, F. C., Thorne, J., Edmonds, B., Schneider, T., Eichele, T., & Debener, S. (2009). Semi-automatic identification of independent components representing EEG artifact. Clinical Neurophysiology, 120(5), 868-877. https://doi.org/10.1016/j.clinph.2009.01.015.
      Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 28-46. https://doi.org/10.1016/j.jchemneu.2016.01.010.
      WHO ASSIST Working Group. (2002). The alcohol, smoking and substance involvement screening test (ASSIST): Development, reliability and feasibility. Addiction, 97(9), 1183-1194. https://doi.org/10.1046/j.1360-0443.2002.00185.x.
      Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). Academic Press.
      Young, M. E., Sutherland, S. C., & McCoy, A. W. (2018). Optimal go/no-go ratios to maximize false alarms. Behavior Research Methods, 50(3), 1020-1029. https://doi.org/10.3758/s13428-017-0923-5.
    • Grant Information:
      FOR 2698 Deutsche Forschungsgemeinschaft; FOR 2790 Deutsche Forschungsgemeinschaft
    • Contributed Indexing:
      Keywords: EEG; ICA; perception-action integration; response inhibition; temporal signal decomposition; theory of event coding
    • Publication Date:
      Date Created: 20220909 Date Completed: 20230103 Latest Revision: 20230329
    • Publication Date:
      20240104
    • Accession Number:
      10.1111/psyp.14178
    • Accession Number:
      36083256