Monitoring genetic diversity with new indicators applied to an alpine freshwater top predator.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
    • Subject Terms:
    • Abstract:
      Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. We monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout (Salmo trutta) inhabiting 27 small mountain lakes representing 10 lake systems in central Sweden using >1200 fish per time point. We tested six newly proposed indicators; three were designed for broad, international use in the UN Convention on Biological Diversity (CBD) and are currently applied in several countries. The other three were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations (indicators ΔH and ΔF ST , respectively) and assess the effective population size (N e -indicator). We identified 29 genetically distinct populations, all retained over time. Twelve of the 27 lakes harboured more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The N e indicator showed values below the threshold (N e  ≤ 500) in 20 populations with five showing N e  < 100. Statistically significant genetic diversity reductions occurred in several populations. Metapopulation structure appears to buffer against diversity loss; applying the indicators to metapopulations suggest mostly acceptable rates of change in all but one system. The CBD indicators agreed with the Swedish ones but provided less detail. All these indicators are appropriate for managers to initiate monitoring of genetic biodiversity.
      (© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
    • References:
      Mol Ecol. 2022 Dec;31(24):6422-6439. (PMID: 36170147)
      Ecol Evol. 2019 Sep 26;9(19):11448-11463. (PMID: 31641485)
      Science. 2020 Mar 6;367(6482):1083-1085. (PMID: 32139534)
      Mol Ecol Resour. 2008 Jan;8(1):103-6. (PMID: 21585727)
      Mol Ecol. 2015 Oct;24(20):5158-74. (PMID: 26363183)
      Bioscience. 2021 May 26;71(9):964-976. (PMID: 34475806)
      Mol Ecol Resour. 2014 Jan;14(1):209-14. (PMID: 23992227)
      BMC Genet. 2010 Oct 15;11:94. (PMID: 20950446)
      Bioinformatics. 2008 Jun 1;24(11):1403-5. (PMID: 18397895)
      Mol Ecol Resour. 2019 Jul;19(4):970-981. (PMID: 30681281)
      Evol Appl. 2010 May;3(3):244-62. (PMID: 25567922)
      Mol Biol Evol. 2010 Apr;27(4):747-52. (PMID: 20022889)
      Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2152-2157. (PMID: 30659151)
      Ecology. 2011 Apr;92(4):915-23. (PMID: 21661554)
      Bioinformatics. 2012 Oct 1;28(19):2537-9. (PMID: 22820204)
      Theor Popul Biol. 2016 Dec;112:139-156. (PMID: 27634366)
      Mol Ecol. 2018 Oct;27(20):4011-4025. (PMID: 30137668)
      Genetics. 2007 Oct;177(2):927-35. (PMID: 17720927)
      J Fish Biol. 2019 Sep;95(3):692-718. (PMID: 31197849)
      Biol Rev Camb Philos Soc. 2022 Aug;97(4):1511-1538. (PMID: 35415952)
      Genetics. 1996 Jul;143(3):1369-81. (PMID: 8807308)
      Heredity (Edinb). 2016 Oct;117(4):279-89. (PMID: 27328654)
      PLoS One. 2014 Nov 19;9(11):e113139. (PMID: 25409501)
      Mol Ecol. 2019 Apr;28(8):1904-1918. (PMID: 30663828)
      Mol Ecol. 2004 May;13(5):1129-42. (PMID: 15078451)
      Proc Biol Sci. 2021 Apr 28;288(1949):20203147. (PMID: 33878928)
      Mol Ecol. 2022 Jan;31(2):498-511. (PMID: 34699656)
      Mol Ecol. 2015 Nov;24(22):5544-60. (PMID: 26460923)
      Bioinformatics. 2011 Nov 1;27(21):3070-1. (PMID: 21926124)
      Evol Appl. 2019 Nov 01;13(2):400-416. (PMID: 31993085)
      Genetics. 1979 May;92(1):247-62. (PMID: 499765)
      Trends Ecol Evol. 2018 Mar;33(3):153-163. (PMID: 29241941)
      Conserv Biol. 2010 Feb;24(1):86-8. (PMID: 20028412)
      Science. 2020 Oct 23;370(6515):411-413. (PMID: 33093100)
      Hereditas. 1976;83(1):73-82. (PMID: 965242)
      Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15261-4. (PMID: 15477597)
      Mol Ecol Resour. 2014 Jan;14(1):87-99. (PMID: 24034449)
      Heredity (Edinb). 2012 Oct;109(4):246-53. (PMID: 22828900)
      Mol Ecol. 2021 Oct;30(20):4991-5008. (PMID: 34379852)
      AoB Plants. 2015 May 19;7:. (PMID: 25990363)
      Science. 2014 Oct 10;346(6206):241-4. (PMID: 25278504)
      Heredity (Edinb). 1999 Feb;82 ( Pt 2):117-25. (PMID: 10098262)
      PLoS One. 2016 Sep 28;11(9):e0162325. (PMID: 27680019)
      Genetics. 2000 Jun;155(2):945-59. (PMID: 10835412)
      Evolution. 1984 Nov;38(6):1358-1370. (PMID: 28563791)
      Evolution. 1998 Jun;52(3):910-915. (PMID: 28565237)
      Theor Popul Biol. 2020 Feb;131:79-99. (PMID: 31778709)
      Bioinformatics. 2007 Jul 15;23(14):1801-6. (PMID: 17485429)
      Trends Ecol Evol. 2012 Oct;27(10):578-84. (PMID: 22868005)
      Genetics. 2003 Aug;164(4):1567-87. (PMID: 12930761)
      Nat Commun. 2019 Dec 20;10(1):5821. (PMID: 31862880)
    • Contributed Indexing:
      Keywords: cryptic sympatry; hidden biodiversity; intraspecific biodiversity; protected area; sympatric populations
    • Publication Date:
      Date Created: 20220928 Date Completed: 20221206 Latest Revision: 20230415
    • Publication Date:
      20240105
    • Accession Number:
      PMC10091952
    • Accession Number:
      10.1111/mec.16710
    • Accession Number:
      36170147