All the Pringle ladies: Neural and behavioral responses to high-calorie food rewards in young adult women.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      Reward processing is vital for learning and survival, and can be indexed using the Reward Positivity (RewP), an event-related potential (ERP) component that is larger for rewards than losses. Prior work suggests that heightened motivation to obtain reward, as well as greater reward value, is associated with an enhanced RewP. However, the extent to which internal and external factors modulate neural responses to rewards, and whether such neural responses motivate reward-seeking behavior, remains unclear. The present study investigated whether the degree to which a reward is salient to an individual's current motivational state modulates the RewP, and whether the RewP predicts motivated behaviors, in a sample of 133 women. To elicit the RewP, participants completed a forced-choice food reward guessing task. Data were also collected on food-related behaviors (i.e., type of food chosen, consumption of the food reward) and motivational salience factors (i.e., self-reported hunger, time since last meal, and subjective "liking" of food reward). Results showed that hungrier participants displayed an enhanced RewP compared to less hungry individuals. Further, self-reported snack liking interacted with RewP magnitude to predict behavior, such that when participants reported low levels of snack liking, those with a smaller RewP were more likely to consume their snacks than those with a larger RewP. Our data suggest that food-related motivational state may increase neural sensitivity to food reward in young women, and that neural markers of reward sensitivity might interact with subjective reward liking to predict real-world eating behavior.
      (© 2022 Society for Psychophysiological Research.)
    • References:
      American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing.
      Angus, D. J., Kemkes, K., Schutter, D. J., & Harmon-Jones, E. (2015). Anger is associated with reward-related electrocortical activity: Evidence from the reward positivity. Psychophysiology, 52(10), 1271-1280. https://doi.org/10.1111/psyp.12460.
      Avena, N. M., & Bocarsly, M. E. (2012). Dysregulation of brain reward systems in eating disorders: Neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology, 63(1), 87-96. https://doi.org/10.1016/j.neuropharm.2011.11.010.
      Avena, N. M., Rada, P., & Hoebel, B. G. (2008). Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience & Biobehavioral Reviews, 32(1), 20-39. https://doi.org/10.1016/j.neubiorev.2007.04.019.
      Avena, N. M., Rada, P., & Hoebel, B. G. (2009). Sugar and fat bingeing have notable differences in addictive-like behavior. The Journal of Nutrition, 139(3), 623-628. https://doi.org/10.3945/jn.108.097584.
      Baker, T. E., & Holroyd, C. B. (2011). Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200. Biological Psychology, 87(1), 25-34. https://doi.org/10.1016/j.biopsycho.2011.01.010.
      Baker, T. E., Wood, J. M., & Holroyd, C. B. (2016). Atypical valuation of monetary and cigarette rewards in substance dependent smokers. Clinical Neurophysiology, 127(2), 1358-1365. https://doi.org/10.1016/j.clinph.2015.11.002.
      Bakker, J. M., Goossens, L., Kumar, P., Lange, I. M., Michielse, S., Schruers, K., Bastiaansen, J. A., Lieverse, R., Marcelis, M., van Amelsvoort, T., van Os, J., Myin-Germeys, I., Pizzagalli, D. A., & Wichers, M. (2019). From laboratory to life: associating brain reward processing with real-life motivated behaviour and symptoms of depression in non-help-seeking young adults. Psychological Medicine, 49(14), 2441-2451. https://doi.org/10.1017/S0033291718003446.
      Banica, I., Schell, S., Racine, S., & Weinberg, A. (2022). Associations between different facets of anhedonia and neural response to monetary, social, and food reward in emerging adults. Biological Psychology, 172, 108363. https://doi.org/10.1016/j.biopsycho.2022.108363.
      Baskin-Sommers, A. R., & Foti, D. (2015). Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism. International Journal of Psychophysiology, 98(2), 227-239. https://doi.org/10.1016/j.ijpsycho.2015.01.011.
      Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models Usinglme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01.
      Beaver, J. D., Lawrence, A. D., Van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. Journal of Neuroscience, 26(19), 5160-5166. https://doi.org/10.1523/JNEUROSCI.0350-06.2006.
      Berridge, K. C. (2009). “Liking” and “wanting” food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537-550. https://doi.org/10.1016/j.physbeh.2009.02.044.
      Bismark, A. W., Hajcak, G., Whitworth, N. M., & Allen, J. J. (2013). The role of outcome expectations in the generation of the feedback-related negativity. Psychophysiology, 50(2), 125-133. https://doi.org/10.1111/j.1469-8986.2012.01490.x.
      Blum, K., Cull, J. G., Braverman, E. R., & Comings, D. E. (1996). Reward deficiency syndrome. American Scientist, 84(2), 132-145.
      Bohon, C., & Stice, E. (2012). Negative affect and neural response to palatable food intake in bulimia nervosa. Appetite, 58(3), 964-970. https://doi.org/10.1016/j.appet.2012.02.051.
      Boswell, R. G., & Kober, H. (2016). Food cue reactivity and craving predict eating and weight gain: a meta-analytic review. Obesity Reviews, 17(2), 159-177. https://doi.org/10.1111/obr.12354.
      Bress, J. N., & Hajcak, G. (2013). Self-report and behavioral measures of reward sensitivity predict the feedback negativity. Psychophysiology, 50(7), 610-616. https://doi.org/10.1111/psyp.12053.
      Bress, J. N., Meyer, A., & Proudfit, G. H. (2015). The stability of the feedback negativity and its relationship with depression during childhood and adolescence. Development and Psychopathology, 27(4pt1), 1285-1294. https://doi.org/10.1017/S0954579414001400.
      Briers, B., Pandelaere, M., Dewitte, S., & Warlop, L. (2006). Hungry for money: The desire for caloric resources increases the desire for financial resources and vice versa. Psychological Science, 17(11), 939-943. https://doi.org/10.1111/j.1467-9280.2006.01808.x.
      Brown, D. R., Jackson, T. C., & Cavanagh, J. F. (2022). The reward positivity is sensitive to affective liking. Cognitive, Affective, & Behavioral Neuroscience, 22(2), 258-267. https://doi.org/10.3758/s13415-021-00950-5.
      Cameron, J. D., Goldfield, G. S., Finlayson, G., Blundell, J. E., & Doucet, É. (2014). Fasting for 24 hours heightens reward from food and food-related cues. PLoS One, 9(1), e85970. https://doi.org/10.1371/journal.pone.0085970.
      Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. NeuroImage, 57(4), 1608-1616. https://doi.org/10.1016/j.neuroimage.2011.05.037.
      Cavanagh, J. F. (2015). Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times. NeuroImage, 110, 205-216. https://doi.org/10.1016/j.neuroimage.2015.02.007.
      Ciampolini, M., Lovell-Smith, H. D., Kenealy, T., & Bianchi, R. (2013). Hunger can be taught: Hunger recognition regulates eating and improves energy balance. International Journal of General Medicine, 6, 465. https://doi.org/10.2147/IJGM.S40655.
      Clayson, P. E., & Miller, G. A. (2017). Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting. International Journal of Psychophysiology, 111, 57-67. https://doi.org/10.1016/j.ijpsycho.2016.09.005.
      Colantuoni, C., Schwenker, J., McCarthy, J., Rada, P., Ladenheim, B., Cadet, J. L., Schwartz, G. J., Moran, T. H., & Hoebel, B. G. (2001). Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport, 12(16), 3549-3552.
      Cooper, N., Bassett, D. S., & Falk, E. B. (2017). Coherent activity between brain regions that code for value is linked to the malleability of human behavior. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/srep43250.
      Cyranowski, J. M., Frank, E., Young, E., & Shear, M. K. (2000). Adolescent onset of the gender difference in lifetime rates of major depression: A theoretical model. Archives of General Psychiatry, 57(1), 21-27. https://doi.org/10.1001/archpsyc.57.1.21.
      Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current Opinion in Neurobiology, 18(2), 185-196. https://doi.org/10.1016/j.conb.2008.08.003.
      Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. Journal of Neuroscience, 32(16), 5549-5552. https://doi.org/10.1523/JNEUROSCI.5958-11.2012.
      Dixon, W. J. (1960). Simplified estimation from censored normal samples. The Annals of Mathematical Statistics, 31, 385-391.
      Epstein, L. H., Truesdale, R., Wojcik, A., Paluch, R. A., & Raynor, H. A. (2003). Effects of deprivation on hedonics and reinforcing value of food. Physiology & Behavior, 78(2), 221-227. https://doi.org/10.1016/S0031-9384(02)00978-2.
      Ethridge, P., Kujawa, A., Dirks, M. A., Arfer, K. B., Kessel, E. M., Klein, D. N., & Weinberg, A. (2017). Neural responses to social and monetary reward in early adolescence and emerging adulthood. Psychophysiology, 54(12), 1786-1799. https://doi.org/10.1111/psyp.12957.
      Ethridge, P., & Weinberg, A. (2018). Psychometric properties of neural responses to monetary and social rewards across development. International Journal of Psychophysiology, 132, 311-322. https://doi.org/10.1016/j.ijpsycho.2018.01.011.
      Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191. https://doi.org/10.3758/BF03193146.
      Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 50-58. https://doi.org/10.1016/j.neuroimage.2014.06.058.
      Foti, D., & Hajcak, G. (2010). State sadness reduces neural sensitivity to nonrewards versus rewards. Neuroreport, 21(2), 143-147. https://doi.org/10.1097/WNR.0b013e3283356448.
      Foti, D., Weinberg, A., Dien, J., & Hajcak, G. (2011). Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity. Human Brain Mapping, 32(12), 2207-2216. https://doi.org/10.1002/hbm.21182.
      Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html.
      Frank, S., Laharnar, N., Kullmann, S., Veit, R., Canova, C., Hegner, Y. L., Fritsche, A., & Preissl, H. (2010). Processing of food pictures: influence of hunger, gender and calorie content. Brain Research, 1350, 159-166. https://doi.org/10.1016/j.brainres.2010.04.030.
      Freeman, C., Dirks, M., & Weinberg, A. (2020). Neural response to rewards predicts risk-taking in late but not early adolescent females. Developmental Cognitive Neuroscience, 45, 100808. https://doi.org/10.1016/j.dcn.2020.100808.
      Fussner, L. M., Mancini, K. J., & Luebbe, A. M. (2018). Depression and approach motivation: Differential relations to monetary, social, and food reward. Journal of Psychopathology and Behavioral Assessment, 40(1), 117-129. https://doi.org/10.1007/s10862-017-9620-z.
      Gable, P., & Harmon-Jones, E. (2008). Relative left frontal activation to appetitive stimuli: Considering the role of individual differences. Psychophysiology, 45(2), 275-278. https://doi.org/10.1111/j.1469-8986.2007.00627.x.
      Galmiche, M., Déchelotte, P., Lambert, G., & Tavolacci, M. P. (2019). Prevalence of eating disorders over the 2000-2018 period: A systematic literature review. The American Journal of Clinical Nutrition, 109(5), 1402-1413. https://doi.org/10.1093/ajcn/nqy342.
      Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279-2282. https://doi.org/10.1126/science.1066893.
      Goldstone, A. P., Prechtl de Hernandez, C. G., Beaver, J. D., Muhammed, K., Croese, C., Bell, G., Durighel, G., Hughes, E., Waldman, A. D., Frost, G., & Bell, J. D. (2009). Fasting biases brain reward systems towards high-calorie foods. European Journal of Neuroscience, 30(8), 1625-1635. https://doi.org/10.1111/j.1460-9568.2009.06949.x.
      Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Cognitive Neuroscience, 20(11), 2058-2069. https://doi.org/10.1162/jocn.2008.20134.
      Grand, K. F., Daou, M., Lohse, K. R., & Miller, M. W. (2017). Investigating the mechanisms underlying the effects of an incidental choice on motor learning. Journal of Motor Learning and Development, 5(2), 207-226. https://doi.org/10.1123/jmld.2016-0041.
      Greer, S. M., Goldstein, A. N., & Walker, M. P. (2013). The impact of sleep deprivation on food desire in the human brain. Nature Communications, 4(1), 1-7. https://doi.org/10.1038/ncomms3259.
      Hager, N. M., Judah, M. R., & Rawls, E. (2022). Win, lose, or draw: Examining salience, reward memory, and depression with the reward positivity. Psychophysiology, 59(1), e13953. https://doi.org/10.1111/psyp.13953.
      Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71, 148-154. https://doi.org/10.1016/j.biopsycho.2005.04.001.
      Hajcak Proudfit, G. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459. https://doi.org/10.1111/psyp.12370.
      Harmon-Jones, E., Gable, P. A., & Price, T. F. (2011). Leaning embodies desire: Evidence that leaning forward increases relative left frontal cortical activation to appetitive stimuli. Biological Psychology, 87(2), 311-313. https://doi.org/10.1016/j.biopsycho.2011.03.009.
      Heydari, S., & Holroyd, C. B. (2016). Reward positivity: Reward prediction error or salience prediction error? Psychophysiology, 53(8), 1185-1192. https://doi.org/10.1111/psyp.12673.
      Hill, A. J., & Heaton-Brown, L. (1994). The experience of food craving: A prospective investigation in healthy women. Journal of Psychosomatic Research, 38(8), 801-814. https://doi.org/10.1016/0022-3999(94)90068-X.
      Hinton, E. C., Parkinson, J. A., Holland, A. J., Arana, F. S., Roberts, A. C., & Owen, A. M. (2004). Neural contributions to the motivational control of appetite in humans. European Journal of Neuroscience, 20(5), 1411-1418. https://doi.org/10.1111/j.1460-9568.2004.03589.x.
      Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709. https://doi.org/10.1037//0033-295X.109.4.679.
      Huggins, A. A., Weinberg, A., Gorka, S. M., & Shankman, S. A. (2019). Blunted neural response to gains versus losses associated with both risk-prone and risk-averse behavior in a clinically diverse sample. Psychophysiology, 56(6), e13342. https://doi.org/10.1111/psyp.13342.
      Huvermann, D. M., Bellebaum, C., & Peterburs, J. (2021). Selective devaluation affects the processing of preferred rewards. Cognitive, Affective, & Behavioral Neuroscience, 21, 1010-1025. https://doi.org/10.3758/s13415-021-00904-x.
      IBM Corp. Released (2020). IBM SPSS statistics for windows, Version 27.0. IBM Corp.
      Janes, A. C., Pizzagalli, D. A., Richardt, S., Frederick, B. D., Chuzi, S., Pachas, G., Culhane, M. A., Holmes, A. J., Fava, M., Evins, A. E., & Kaufman, M. J. (2010). Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry, 67(8), 722-729. https://doi.org/10.1016/j.biopsych.2009.12.034.
      Jia, S., Zhang, W., Li, P., Feng, T., & Li, H. (2013). Attitude toward money modulates outcome processing: An ERP study. Social Neuroscience, 8(1), 43-51. https://doi.org/10.1080/17470919.2012.713316.
      Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Powers, A., Mehta, N., Dyke, J., & Casey, B. J. (2014). Adolescent-specific patterns of behavior and neural activity during social reinforcement learning. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 683-697. https://doi.org/10.3758/s13415-014-0257-z.
      Kerem, L., Holsen, L., Fazeli, P., Bredella, M. A., Mancuso, C., Resulaj, M., Holmes, T. M., Klibanski, A., & Lawson, E. A. (2021). Modulation of neural fMRI responses to visual food cues by overeating and fasting interventions: A preliminary study. Physiological Reports, 8(24), e14639. https://doi.org/10.14814/phy2.14639.
      Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E., & Wang, P. S. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA, 289(23), 3095-3105. https://doi.org/10.1001/jama.289.23.3095.
      Killgore, W. D., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high-versus low-calorie foods. NeuroImage, 19(4), 1381-1394. https://doi.org/10.1016/S1053-8119(03)00191-5.
      Kirsch, P., Schienle, A., Stark, R., Sammer, G., Blecker, C., Walter, B., Ott, U., Burkart, J., & Vaitl, D. (2003). Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: An event-related fMRI study. NeuroImage, 20(2), 1086-1095. https://doi.org/10.1016/S1053-8119(03)00381-1.
      Kohls, G., Peltzer, J., Herpertz-Dahlmann, B., & Konrad, K. (2009). Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science, 12(4), 614-625. https://doi.org/10.1111/j.1467-7687.2009.00816.x.
      Kujawa, A., Arfer, K. B., Klein, D. N., & Proudfit, G. H. (2014). Electrocortical reactivity to social feedback in youth: A pilot study of the Island Getaway task. Developmental Cognitive Neuroscience, 10, 140-147. https://doi.org/10.1016/j.dcn.2014.08.008.
      Kujawa, A., Burkhouse, K. L., Karich, S. R., Fitzgerald, K. D., Monk, C. S., & Phan, K. L. (2019). Reduced reward responsiveness predicts change in depressive symptoms in anxious children and adolescents following treatment. Journal of Child and Adolescent Psychopharmacology, 29(5), 378-385. https://doi.org/10.1089/cap.2018.0172.
      Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13.
      LaBar, K. S., Gitelman, D. R., Parrish, T. B., Kim, Y. H., Nobre, A. C., & Mesulam, M. (2001). Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behavioral Neuroscience, 115(2), 493-500. https://doi.org/10.1037/0735-7044.115.2.493.
      Lange, S., Leue, A., & Beauducel, A. (2012). Behavioral approach and reward processing: Results on feedback-related negativity and P3 component. Biological Psychology, 89(2), 416-425. https://doi.org/10.1016/j.biopsycho.2011.12.004.
      Lappalainen, R., & Epstein, L. H. (1990). A behavioral economics analysis of food choice in humans. Appetite, 14(2), 81-93. https://doi.org/10.1016/0195-6663(90)90002-P.
      Lenoir, M., Serre, F., Cantin, L., & Ahmed, S. H. (2007). Intense sweetness surpasses cocaine reward. PLoS One, 2(8), e698. https://doi.org/10.1371/journal.pone.0000698.
      Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53, 213-220. https://doi.org/10.1016/j.neuropsychologia.2013.11.023.
      Lopez, R. B., Hofmann, W., Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2014). Neural predictors of giving in to temptation in daily life. Psychological Science, 25(7), 1337-1344. https://doi.org/10.1177/0956797614531492.
      Luking, K. R., & Barch, D. M. (2013). Candy and the brain: Neural response to candy gains and losses. Cognitive, Affective, & Behavioral Neuroscience, 13(3), 437-451. https://doi.org/10.3758/s13415-013-0156-8.
      Luking, K. R., Luby, J. L., & Barch, D. M. (2014). Kids, candy, brain and behavior: Age differences in responses to candy gains and losses. Developmental Cognitive Neuroscience, 9, 82-92. https://doi.org/10.1016/j.dcn.2014.01.005.
      Macdiarmid, J. I., & Hetherington, M. M. (1995). Mood modulation by food: An exploration of affect and cravings in ‘chocolate addicts’. British Journal of Clinical Psychology, 34(1), 129-138. https://doi.org/10.1111/j.2044-8260.1995.tb01445.x.
      Macht, M., & Dettmer, D. (2006). Everyday mood and emotions after eating a chocolate bar or an apple. Appetite, 46(3), 332-336. https://doi.org/10.1016/j.appet.2006.01.014.
      Malik, S., McGlone, F., Bedrossian, D., & Dagher, A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metabolism, 7(5), 400-409. https://doi.org/10.1016/j.cmet.2008.03.007.
      Matyjek, M., Meliss, S., Dziobek, I., & Murayama, K. (2020). A multidimensional view on social and non-social rewards. Frontiers in Psychiatry, 11, 818. https://doi.org/10.3389/fpsyt.2020.00818.
      Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. New England Journal of Medicine, 249(1), 13-16. https://doi.org/10.1056/NEJM195307022490104.
      Meadows, C. C., Gable, P. A., Lohse, K. R., & Miller, M. W. (2016). The effects of reward magnitude on reward processing: An averaged and single trial event-related potential study. Biological Psychology, 118, 154-160. https://doi.org/10.1016/j.biopsycho.2016.06.002.
      Melanson, K. J., Greenberg, A. S., Ludwig, D. S., Saltzman, E., Dallal, G. E., & Roberts, S. B. (1998). Blood glucose and hormonal responses to small and large meals in healthy young and older women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 53(4), B299-B305. https://doi.org/10.1093/gerona/53A.4.B299.
      Meyer, A., Lerner, M. D., De Los Reyes, A., Laird, R. D., & Hajcak, G. (2017). Considering ERP difference scores as individual difference measures: Issues with subtraction and alternative approaches. Psychophysiology, 54(1), 114-122. https://doi.org/10.1111/psyp.12664.
      Miller, G. A., Gratton, G., & Yee, C. M. (1988). Generalized implementation of an eye movement correction procedure. Psychophysiology, 25(2), 241-243. https://doi.org/10.1111/j.1469-8986.1988.tb00999.x.
      Morris, M. J., Na, E. S., & Johnson, A. K. (2008). Salt craving: The psychobiology of pathogenic sodium intake. Physiology & Behavior, 94(5), 709-721. https://doi.org/10.1016/j.physbeh.2008.04.008.
      Mulligan, E. M., & Hajcak, G. (2018). The electrocortical response to rewarding and aversive feedback: The reward positivity does not reflect salience in simple gambling tasks. International Journal of Psychophysiology, 132, 262-267. https://doi.org/10.1016/j.ijpsycho.2017.11.015.
      Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G. (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. American Journal of Psychiatry, 173(12), 1223-1230. https://doi.org/10.1176/appi.ajp.2016.15121524.
      Nelson, L. D., & Morrison, E. L. (2005). The symptoms of resource scarcity: Judgments of food and finances influence preferences for potential partners. Psychological Science, 16(2), 167-173. https://doi.org/10.1111/j.0956-7976.2005.00798.x.
      Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. (2004). Reinforcement-related brain potentials from medial frontal cortex: Origins and functional significance. Neuroscience & Biobehavioral Reviews, 28(4), 441-448. https://doi.org/10.1016/j.neubiorev.2004.05.003.
      O'Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33(5), 815-826. https://doi.org/10.1016/S0896-6273(02)00603-7.
      Peterburs, J., Sannemann, L., & Bellebaum, C. (2019). Subjective preferences differentially modulate the processing of rewards gained by own vs. observed choices. Neuropsychologia, 132, 107139. https://doi.org/10.1016/j.neuropsychologia.2019.107139.
      Pleskac, T. J., Wallsten, T. S., Wang, P., & Lejuez, C. W. (2008). Development of an automatic response mode to improve the clinical utility of sequential risk-taking tasks. Experimental and Clinical Psychopharmacology, 16(6), 555-564. https://doi.org/10.1037/a0014245.
      Plihal, W., Haenschel, C., Hachl, P., Born, J., & Pietrowsky, R. (2001). The effect of food deprivation on ERP during identification of tachistoscopically presented food-related words. Journal of Psychophysiology, 15(3), 163-172. https://doi.org/10.1027/0269-8803.15.3.163.
      Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006a). Simple intercepts, simple slopes, and regions of significance in MLR 2-way interactions. QuantPsy.org http://www.quantpsy.org/interact/mlr2.htm.
      Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006b). Computational tools for probing interaction effects in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31, 437-448. https://doi.org/10.3102/10769986031004437.
      Proudfit, G. H., Bress, J. N., Foti, D., Kujawa, A., & Klein, D. N. (2015). Depression and event-related potentials: Emotional disengagement and reward insensitivity. Current Opinion in Psychology, 4, 110-113. https://doi.org/10.1016/j.copsyc.2014.12.018.
      Rademacher, L., Krach, S., Kohls, G., Irmak, A., Gründer, G., & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 49(4), 3276-3285. https://doi.org/10.1016/j.neuroimage.2009.10.089.
      Rademacher, L., Schulte-Rüther, M., Hanewald, B., & Lammertz, S. (2015). Reward: From basic reinforcers to anticipation of social cues. In M. Wöhr, & S. Krach (Eds.), Social behavior from rodents to humans (pp. 207-221). Springer. https://doi.org/10.1007/7854_2015_429.
      Rogers, P. J., & Smit, H. J. (2000). Food craving and food “addiction”: A critical review of the evidence from a biopsychosocial perspective. Pharmacology Biochemistry and Behavior, 66(1), 3-14. https://doi.org/10.1016/s0091-3057(00)00197-0.
      Sambrook, T. D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages. Psychological Bulletin, 141(1), 213-235. https://doi.org/10.1037/bul0000006.
      San Martín, R. (2012). Event-related potential studies of outcome processing and feedback-guided learning. Frontiers in Human Neuroscience, 6, 304. https://doi.org/10.3389/fnhum.2012.00304.
      San Martín, R., Manes, F., Hurtado, E., Isla, P., & Ibañez, A. (2010). Size and probability of rewards modulate the feedback error-related negativity associated with wins but not losses in a monetarily rewarded gambling task. NeuroImage, 51(3), 1194-1204. https://doi.org/10.1016/j.neuroimage.2010.03.031.
      Saper, C. B., Chou, T. C., & Elmquist, J. K. (2002). The need to feed: Homeostatic and hedonic control of eating. Neuron, 36(2), 199-211. https://doi.org/10.1016/S0896-6273(02)00969-8.
      Schell, S. E., Banica, I., Weinberg, A., & Racine, S. E. (2021). Hunger games: Associations between core eating disorder symptoms and responses to rejection by peers during competition. International Journal of Eating Disorders, 54(5), 802-811. https://doi.org/10.1002/eat.23487.
      Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241-263. https://doi.org/10.1016/S0896-6273(02)00967-4.
      Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599. https://doi.org/10.1126/science.275.5306.1593.
      Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696. https://doi.org/10.1016/j.neubiorev.2013.02.002.
      Simon, J. J., Skunde, M., Wu, M., Schnell, K., Herpertz, S. C., Bendszus, M., Herzog, W., & Friederich, H. C. (2015). Neural dissociation of food-and money-related reward processing using an abstract incentive delay task. Social Cognitive and Affective Neuroscience, 10(8), 1113-1120. https://doi.org/10.1093/scan/nsu162.
      Soder, H. E., & Potts, G. F. (2018). Medial frontal cortex response to unexpected motivationally salient outcomes. International Journal of Psychophysiology, 132, 268-276. https://doi.org/10.1016/j.ijpsycho.2017.11.003.
      Stockburger, J., Schmälzle, R., Flaisch, T., Bublatzky, F., & Schupp, H. T. (2009). The impact of hunger on food cue processing: An event-related brain potential study. NeuroImage, 47(4), 1819-1829. https://doi.org/10.1016/j.neuroimage.2009.04.071.
      Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction (Vol. 116). Cambridge University Press.
      Tanaka, S. C., Balleine, B. W., & O'Doherty, J. P. (2008). Calculating consequences: Brain systems that encode the causal effects of actions. Journal of Neuroscience, 28(26), 6750-6755. https://doi.org/10.1523/JNEUROSCI.1808-08.2008.
      Threadgill, A. H., & Gable, P. A. (2016). Approach-motivated pregoal states enhance the reward positivity. Psychophysiology, 53(5), 733-738. https://doi.org/10.1111/psyp.12611.
      Threadgill, A. H., & Gable, P. A. (2018). The sweetness of successful goal pursuit: Approach-motivated pregoal states enhance the reward positivity during goal pursuit. International Journal of Psychophysiology, 132, 277-286. https://doi.org/10.1016/j.ijpsycho.2017.12.010.
      Tunison, E., Sylvain, R., Sterr, J., Hiley, V., & Carlson, J. M. (2019). No money, no problem: Enhanced reward positivity in the absence of monetary reward. Frontiers in Human Neuroscience, 13, 41. https://doi.org/10.3389/fnhum.2019.00041.
      Valentin, V. V., Dickinson, A., & O'Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27(15), 4019-4026. https://doi.org/10.1523/JNEUROSCI.0564-07.2007.
      van der Helden, J., Boksem, M. A., & Blom, J. H. (2010). The importance of failure: feedback-related negativity predicts motor learning efficiency. Cerebral Cortex, 20(7), 1596-1603. https://doi.org/10.1093/cercor/bhp224.
      van Swieten, M. M., Bogacz, R., & Manohar, S. G. (2021). Hunger improves reinforcement-driven but not planned action. Cognitive, Affective, & Behavioral Neuroscience, 21(6), 1196-1206. https://doi.org/10.3758/s13415-021-00921-w.
      Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., & Baler, R. (2011). Food and drug reward: Overlapping circuits in human obesity and addiction. In C. Carter, & J. Dalley (Eds.), Brain imaging in behavioral neuroscience (pp. 1-24). Springer. https://doi.org/10.1007/7854_2011_169.
      Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., Wong, C., Gatley, S. J., Gifford, A. N., Ding, Y.-S., & Pappas, N. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44(3), 175-180. https://doi.org/10.1002/syn.10075.
      Wagner, D. D., Boswell, R. G., Kelley, W. M., & Heatherton, T. F. (2012). Inducing negative affect increases the reward value of appetizing foods in dieters. Journal of Cognitive Neuroscience, 24(7), 1625-1633. https://doi.org/10.1162/jocn_a_00238.
      Wang, G. J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W., Netusil, N., & Fowler, J. S. (2001). Brain dopamine and obesity. The Lancet, 357(9253), 354-357. https://doi.org/10.1016/S0140-6736(00)03643-6.
      Wang, G. J., Volkow, N. D., Thanos, P. K., & Fowler, J. S. (2004). Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. Journal of Addictive Diseases, 23(3), 39-53. https://doi.org/10.1300/J069v23n03_04.
      Weinberg, A., Ethridge, P., Pegg, S., Freeman, C., Kujawa, A., & Dirks, M. A. (2021). Neural responses to social acceptance predict behavioral adjustments following peer feedback in the context of a real-time social interaction task. Psychophysiology, 58(3), e13748. https://doi.org/10.1111/psyp.13748.
      Weinberg, A., Liu, H., Hajcak, G., & Shankman, S. A. (2015). Blunted neural response to rewards as a vulnerability factor for depression: Results from a family study. Journal of Abnormal Psychology, 124(4), 878-889. https://doi.org/10.1037/abn0000081.
      Weinberg, A., Luhmann, C. C., Bress, J. N., & Hajcak, G. (2012). Better late than never? The effect of feedback delay on ERP indices of reward processing. Cognitive, Affective, & Behavioral Neuroscience, 12(4), 671-677. https://doi.org/10.3758/s13415-012-0104-z.
      Weinberg, A., Riesel, A., & Proudfit, G. H. (2014). Show me the money: The impact of actual rewards and losses on the feedback negativity. Brain and Cognition, 87, 134-139. https://doi.org/10.1016/j.bandc.2014.03.015.
      Weinberg, A., & Shankman, S. A. (2017). Blunted reward processing in remitted melancholic depression. Clinical Psychological Science, 5(1), 14-25. https://doi.org/10.1177/2167702616633158.
      Williams, C. C., Hassall, C. D., Lindenbach, T., & Krigolson, O. E. (2020). Reward prediction errors reflect an underlying learning process that parallels behavioural adaptations: A trial-to-trial analysis. Computational Brain & Behavior, 3(2), 189-199. https://doi.org/10.1007/s42113-019-00069-4.
      Wise, R. A., & Rompre, P.-P. (1989). Brain dopamine and reward. Annual Review of Psychology, 40(1), 191-225.
      Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15, 535-544. https://doi.org/10.1093/cercor/bhh153.
    • Grant Information:
      Canada Research Chairs; Fonds de Recherche du Québec-Société et Culture
    • Contributed Indexing:
      Keywords: event-related potentials (ERPs); food reward; reward positivity (RewP); reward salience
    • Publication Date:
      Date Created: 20221002 Date Completed: 20230124 Latest Revision: 20230329
    • Publication Date:
      20240105
    • Accession Number:
      10.1111/psyp.14188
    • Accession Number:
      36183246