Development and characterization of non-coding RNA-derived simple sequence repeat markers in coconut (Cocos nucifera L.).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 100939343 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-7948 (Electronic) Linking ISSN: 1438793X NLM ISO Abbreviation: Funct Integr Genomics Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer, c2000-
    • Subject Terms:
    • Abstract:
      Non-coding RNA (ncRNA)-based SSR markers are highly useful in molecular breeding as ncRNAs play a significant role in gene regulation. In the present study, for the first time in coconut, we have identified 597 ncRNA-derived SSR markers, including 509 long non-coding RNASSRs (lncRNASSRs) and 88 micro RNASSRs (miRNASSRs). Of these, 20 primers (10 each from lncRNA-SSR and miRNA-SSR) were selected, screened on 6 coconut accessions, and 50% produced polymorphic fragments. These 10 polymorphic primers were used for genotyping 96 palms of 16 coconut accessions, comprising eight tall and dwarf accessions each. The number of alleles ranged from 2 to 9 per SSR marker, with an average of 4.6 alleles per locus. The average heterozygosity and Shannon index were 0.5 and 1.1, respectively, suggesting that ncRNA-SSRs show high polymorphism level. Distance-based cluster analyses revealed that all the tall and dwarf accessions were differentiated and grouped in different clusters. The study demonstrates the usefulness of ncRNA-based SSR markers for assessing genetic diversity and genetic improvement in coconut.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Arunachalam V, Rajesh MK (2017) Coconut genetic diversity, conservation and utilization. In: Ahuja MR, Jain SM (eds) Biodiversity and conservation of woody plants. Springer, Cham, pp 3–36. (PMID: 10.1007/978-3-319-66426-2_1)
      Bhandawat A, Sharma H, Pundir N, Madhawan A, Roy J (2020) Genome-wide identification and characterization of novel non-coding RNA-derived SSRs in wheat. Mol Biol Rep 47(8):6111–6125. (PMID: 10.1007/s11033-020-05687-x32794134)
      Brake M, Al-Qadumii L, Hamasha H, Migdadi H, Awad A, Haddad N, Sadder MT (2022) Development of SSR markers linked to stress responsive genes along tomato chromosome 3 (Solanum lycopersicum L.). BioTech 11(3):34.  https://doi.org/10.3390/biotech11030034.
      Caro RE, Cagayan J, Gardoce RR, Manohar AN, Canama-Salinas AO, Rivera RL, Lantican DV, Galvez HF, Reaño CE (2022) Mining and validation of novel simple sequence repeat (SSR) markers derived from coconut (Cocos nucifera L.) genome assembly. J Genet Eng Biotechnol 20(1):1–4.  https://doi.org/10.1186/s43141-022-00354-z.
      Ganie SA, Mondal TK (2015) Genome-wide development of novel miRNA-based microsatellite markers of rice (Oryza sativa) for genotyping applications. Mol Breed 35:51. (PMID: 10.1007/s11032-015-0207-7)
      Geethanjali S., Rukmani JA, Rajakumar D, Kadirvel P, Viswanathan PL (2018) Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Genet Resour 16(2):156–168.
      Jaiswal V, Rawoof A, Dubey M, Chhapekar SS, Sharma V, Ramchiary N (2020) Development and characterization of non-coding RNA based simple sequence repeat markers in Capsicum species. Genomics 112(2):1554–1564. (PMID: 10.1016/j.ygeno.2019.09.00531505243)
      Kanzana G, Zhang Y, Ma T, Liu W, Wu F, Yan Q, Min X, Yan Z, Muvunyi BP, Li J, Zhang Z (2020) Genome-wide development of miRNA-based SSR markers in Cleistogenes songorica and analysis of their transferability to Gramineae/non-Gramineae species. J Appl Genet 61:367–377. (PMID: 10.1007/s13353-020-00561-932507975)
      Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF (2019) De novo genome sequence assembly of dwarf coconut (Cocos nucifera L.‘Catigan Green Dwarf') provides insights into genomic variation between coconut types and related palm species. G3: Genes Genomes Genetics 9(8):2377–2393.  https://doi.org/10.1534/g3.119.400215.
      Lebrun P, N’Cho YP, Seguin M, Grivet L, Baudouin L (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103–108. (PMID: 10.1023/A:1018323721803)
      Lewis PO (2001) Genetic Data Analysis: Computer program for the analysis of allelic data Version 1.0 (d16c). http://lewis.eeb.uconn.edu/lewishome/software.html.
      Manimekalai R, Nagarajan P, Bharathi M, Jayapragasam M, Karun A, Kumaran PM, Parthasarathy VA (2007) RAPD as useful marker for coconut (Cocos nucifera L.) DNA analysis. Indian J Hortic 64(1):1–4.
      Mehta G, Muthusamy SK, Singh GP, Sharma P (2021) Identification and development of novel salt-responsive candidate gene based SSRs (cg-SSRs) and MIR gene based SSRs (mir-SSRs) in bread wheat (Triticum aestivum). Sci Rep 11(1):1–5. (PMID: 10.1038/s41598-021-81698-3)
      Min X, Zhang Z, Liu Y, Wei X, Liu Z, Wang Y, Liu W (2017) Genome-wide development of microRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related legume species. Int J Mol Sci 18(11):2440. (PMID: 10.3390/ijms18112440291565895713407)
      Mondal TK, Ganie SA (2014) Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene 535(2):204–209. (PMID: 10.1016/j.gene.2013.11.03324315823)
      Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285. (PMID: 10.1080/13102818.2017.1400401)
      Nampoothiri KUK, Kumaran PM, Jerard BA, Ratnambal MJ, Rao EVVB, Parthasarathy VA (1999) Combining ability in coconut (Cocos nucifera). CORD 15(2):1–5.
      Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19(2):153–170. (PMID: 10.1007/BF023007536571220)
      Niral V, Ananda KS, Elain Apshara B, Jerard BA, Chowdappa P (2016) Improved varieties of coconut, arecanut and cocoa. ICAR-Central Plantation Crops Research Institute, Kasaragod, India, p 96.
      Niral V, Jerard BA, Samsudeen K, Nair RV, Jacob PM, Devakumar K, Ratnambal MJ, Kuma-ran PM, Rao EVV, Pillai RV, Thomas George V (2014a) IND 030-Laccadive Micro Tall (IC0430669; INGR13060), a coconut (Cocos nucifera) germplasm with cluster bearing heavy bunches of micronuts. Indian J Plant Genet Resour 27(1):73–74.
      Niral V, Jerard BA, Samsudeen K, Nair RV, Ratnambal MJ, Kumaran PM, Thomas George V (2014b) IND 092 - Cameroon Red Dwarf (IC0598219; INGR13061), a dwarf coconut (Cocos nucifera) germplasm with distinct bright orange coloured nuts, higher content of tender nut water and high copra content. Indian J Plant Genet Resour 27(1):74–75.
      Patil PG, Singh NV, Parashuram S, Bohra A, Mundewadikar DM, Sangnure VR, Babu KD, Sharma J (2020) Genome wide identification, characterization and validation of novel miRNA-based SSR markers in pomegranate (Punica granatum L.). Physiol Mol Biol Plants 26(4):683–696. https://doi.org/10.1007/s12298-020-00790-6.
      Preethi P, Rahman S, Naganeeswaran S, Sabana AA, Gangaraj KP, Jerard BA, Niral V Rajesh MK (2020) Development of EST-SSR markers for genetic diversity analysis in coconut (Cocos nucifera L.). Mol Biol Rep 47(12):9385–9397. https://doi.org/10.1007/s11033-020-05981-8.
      Rajesh MK, Arunachalam V, Nagarajan P, Lebrun P, Samsudeen K, Thamban C (2008) Genetic survey of 10 Indian coconut landraces by simple sequence repeats (SSRs). Sci Hortic 118(4):282–287. (PMID: 10.1016/j.scienta.2008.06.017)
      Rajesh MK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Prasad TSK (2020) Assembly and annotation of the nuclear and organellar genomes of a dwarf coconut (Chowghat Green Dwarf) possessing enhanced disease resistance. OMICS J Integr Biol 24(12):726–742. (PMID: 10.1089/omi.2020.0147)
      Rajesh MK, Fayas TP, Naganeeswaran S, Rachana KE, Bhavyashree U, Sajini KK, Karun A (2016) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253(3):913–928.  https://doi.org/10.1007/s00709-015-0856-8.
      Rajesh MK, Gangurde SS, Pandey MK, Niral V, Sudha R, Jerard BA, Kadke GN, Sabana AA, Muralikrishna KS, Samsudeen K, Karun A, Keshava Prasad TS (2021) Insights on genetic diversity, population structure, and linkage disequilibrium in globally diverse coconut accessions using genotyping-by-sequencing. OMICS J Integr Biol 25(12):796–809. (PMID: 10.1089/omi.2021.0159)
      Rajesh MK, Jerard BA, Preethi P, Jacob TR, Fayas TP, Rachana KE, Anitha K (2013) Development of a RAPD-derived SCAR marker associated with tall-type palm trait in coconut. Sci Hortic 150:312–316. (PMID: 10.1016/j.scienta.2012.11.023)
      Rajesh MK, Karun A, Parthasarathy VA (2019) Coconut biotechnology. In: Nampoothiri KUK, Krishnakumar V, Thampan PK, Nair MA (eds) The coconut palm (Cocos nucifera L.)-research and development perspectives. Springer, Singapore, pp 191–226.  https://doi.org/10.1007/978-981-13-2754-4_6.
      Rajesh MK, Sabana AA, Rachana KE, Rahman S, Jerard BA Karun A (2015) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Biotech 5(6):999–1006.  https://doi.org/10.1007/s13205-015-0304-7.
      Ramesh SV, Sudha R, Niral V, Rajesh MK (2022) Enhancing genetic gain in coconut: conventional, molecular, and genomics-based breeding approaches. In: Gosal SS, Wani SH (eds) Accelerated plant breeding, vol 4. Springer, Cham, pp 313–357. (PMID: 10.1007/978-3-030-81107-5_10)
      Riangwong K, Wanchana S, Aesomnuk W, Saensuk C, Nubankoh P, Ruanjaichon V, Kraithong T, Toojinda T, Vanavichit A Arikit S (2020) Mining and validation of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts (Cocos nucifera L.) in Thailand. Hort Res 7:156. https://doi.org/10.1038/s41438-020-00374-1.
      Sabana AA, Rajesh MK, Antony G (2020) Dynamic changes in the expression pattern of miRNAs and associated target genes during coconut somatic embryogenesis. Planta 251(4):1–18. (PMID: 10.1007/s00425-020-03368-4)
      Singh AK, Chaurasia S, Kumar S, Singh R, Kumari J, Yadav MC, Singh N, Gaba S, Jacob SR (2018) Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biol 18(1):1–5. (PMID: 10.1186/s12870-018-1476-1)
      Summanwar A, Basu U, Kav NN, Rahman H (2020) Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 64(5):547–566. (PMID: 10.1139/gen-2020-006233170735)
      Tabkhkar N, Rabiei B, Lahiji HS, Chaleshtori MH (2020) Identification of a new set of drought-related miRNA-SSR markers and association analysis under drought stress in rice (Oryza sativa L.). Plant Gene 21:100220.  https://doi.org/10.1016/j.plgene.2020.100220.
      Teulat B, Aldam C, Trehin R, Lebrun P, Barker JH, Arnold GM, Karp A, Baudouin L, Rognon F (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100(5):764–771. (PMID: 10.1007/s001220051350)
      Tyagi S, Kumar A, Gautam T, Pandey R, Rustgi S, Mir RR (2021) Development and use of miRNA-derived SSR markers for the study of genetic diversity, population structure, and characterization of genotypes for breeding heat tolerant wheat varieties. PLoS ONE 16(2):e0231063. (PMID: 10.1371/journal.pone.0231063335393397861453)
      Upadhyay A, Jayadev K, Manimekalai R, Parthasarathy VA (2004) Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Sci Hortic 99(3–4):353–362. (PMID: 10.1016/S0304-4238(03)00103-1)
      Wang X, Gui S, Pan L, Hu J, Ding Y (2016) Development and characterization of polymorphic microRNA-based microsatellite markers in Nelumbo nucifera (Nelumbonaceae). Appl Plant Sci 4(1):1500091. (PMID: 10.3732/apps.1500091)
      Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, Xu J, Li Q, Guo A, Zhou L, Li J (2017) The genome draft of coconut (Cocos nucifera). Giga Sci 6(11):gix095. https://doi.org/10.1093/gigascience/gix095.
      Yang Y, Bocs S, Fan H, Armero A, Baudouin L, Xu P, Xu J, This D, Hamelin C, Iqbal A, Qadri R (2021) Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Commun Biol 4(1):1–4. (PMID: 10.1038/s42003-020-01593-x)
    • Grant Information:
      internal fund Central University of Kerala; Project No. 1000761030 ICAR-CPCRI
    • Contributed Indexing:
      Keywords: Coconut; Genetic diversity; Non-coding RNA; Polymorphic SSRs; lncRNA; miRNA
    • Accession Number:
      0 (RNA, Untranslated)
    • Publication Date:
      Date Created: 20221101 Date Completed: 20221129 Latest Revision: 20221129
    • Publication Date:
      20240105
    • Accession Number:
      10.1007/s10142-022-00911-2
    • Accession Number:
      36318348