Molecular advancements in the development of thermostable phytases.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Since the discovery of phytic acid in 1903 and phytase in 1907, extensive research has been carried out in the field of phytases, the phytic acid degradatory enzymes. Apart from forming backbone enzyme in the multimillion dollar-based feed industry, phytases extend a multifaceted role in animal nutrition, industries, human physiology, and agriculture. The utilization of phytases in industries is not effectively achieved most often due to the loss of its activity at high temperatures. The growing demand of thermostable phytases with high residual activity could be addressed by the combinatorial use of efficient phytase sources, protein engineering techniques, heterologous expression hosts, or thermoprotective coatings. The progress in phytase research can contribute to its economized production with a simultaneous reduction of various environmental problems such as eutrophication, greenhouse gas emission, and global warming. In the current review, we address the recent advances in the field of various natural as well as recombinant thermotolerant phytases, their significance, and the factors contributing to their thermotolerance. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Applied Microbiology & Biotechnology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)