Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: Next-generation sequencing is widely used to identify disease-causing variants in patients with rare genetic disorders. Identifying those variants from whole-genome or exome data can be both scientifically challenging and time consuming. A significant amount of time is spent on variant annotation, and interpretation. Fully or partly automated solutions are therefore needed to streamline and scale this process. Results: We describe Phenotype Driven Ranking (PDR), an algorithm integrated into Ingenuity Variant Analysis, that uses observed patient phenotypes to prioritize diseases and genes in order to expedite causal-variant discovery. Our method is based on a network of phenotype-disease-gene relationships derived from the QIAGEN Knowledge Base, which allows for efficient computational association of phenotypes to implicated diseases, and also enables scoring and ranking. Conclusions: We have demonstrated the utility and performance of PDR by applying it to a number of clinical rare-disease cases, where the true causal gene was known beforehand. It is also shown that PDR compares favorably to a representative alternative tool. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of BMC Genomics is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)