Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of p38 MAPK Signaling Pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      It has been suggested that the activation of the p38 mitogen activated protein kinases (MAPKs) signaling pathway plays a significant role in the progression of OA by leading to the overexpression of proinflammatory cytokines, chemokines, and signaling enzymes in human osteoarthritis chondrocytes. However, most p38 MAPK inhibitors applied for OA have been thought to be limited due to their potential long-term toxicities. Geniposide (GE), an iridoid glycoside purified from the fruit of the herb, has been widely used in traditional medicine for the treatment of a variety of chronic inflammatory diseases. In this study, we evaluated the inhibition effect of geniposide on the inflammatory progression of the surgically induced osteoarthritis and whether the protective effect of geniposide on OA is related to the inhibition of the p38 MAPK signaling pathway. In vitro, geniposide attenuated the expression of inflammatory cytokines including interleukin-1 (IL-1), tumor necrosis factor (TNF-α), and nitric oxide (NO) production as well as matrix metalloproteinase- (MMP-) 13 in chondrocytes isolated from surgically induced rabbit osteoarthritis model. Additionally, geniposide markedly suppressed the expression of IL-1, TNF-α, NO, and MMP-13 in the synovial fluid from the rabbits with osteoarthritis. More importantly, our results clearly demonstrated that the inhibitory effect of geniposide on surgery-induced expression of inflammatory mediators in osteoarthritis was closely associated with the suppression of the p38 MAPK signaling pathways. Our study demonstrates that geniposide may have therapeutic potential to serve as an alternative agent for the p38 MAPK inhibition for the treatment of OA due to its inherent features of biological activities and low toxicity as a traditional Chinese medicine. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of BioMed Research International is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)