EEG predictors of dreaming outside of REM sleep.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The stream of human consciousness persists during sleep, albeit in altered form. Disconnected from external input, the mind and brain remain active, at times creating the bizarre sequences of thought and imagery that comprise "dreaming." Yet despite substantial effort toward understanding this unique state of consciousness, no reliable neurophysiological indicator of dreaming has been discovered. Here, we identified electroencephalographic (EEG) correlates of dreaming using a within‐subjects design to characterize the EEG preceding awakenings from sleep onset, REM (rapid eye movement) sleep, and N2 (NREM Stage 2) sleep from which participants were asked to report their mental experience. During the transition into sleep, compared to periods during which participants reported thinking, emergence of dream imagery was associated with increased absolute power below 7 Hz. During later N2, dreaming conversely occurred during periods of decreased relative power below 1 Hz, accompanied by an increase in relative power above 4 Hz. No EEG predictors of dreaming were identified during REM. These observations suggest an inverted‐U relationship between dreaming and the prevalence of low‐frequency EEG rhythms, such that dreaming first emerges in concert with EEG slowing during the sleep‐wake transition, but then disappears as high‐amplitude slow oscillations come to dominate the recording during later N2 sleep. Despite decades of research effort, there is still no consensus on the function or mechanism of dreaming, and no reliable biomarker of dream experience has been identified. Studying the neural mechanisms that support dreaming offers a unique window into understanding the neural correlates of conscious experience in general. Specifically, uncovering the electrophysiological signatures of sleep consciousness is the first step to isolating the necessary and sufficient conditions for the brain to support conscious experience during wakefulness. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Psychophysiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)